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ABSTRACT

In this paper the structure of subspaces and quotients of l;,v of dimension
very close to N is studied, for 1 < p < co. In particular, the maximal
dimension k& = k(p, m, N) so that an arbitrary m-dimensional subspace
X of I{,V contains a good copy of I’;, is investigated for m = N — o(N). In

several cases the obtained results are sharp.
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1. Introduction

One of the most interesting problems in the local theory of Banach spaces is to es-
timate the maximal dimension & = k(p, m, N) so that an arbitrary m-dimensional
subspace X of l},v , with 1 < p < o0, contains a good copy of l:.

This problem has of course an obvious geometric content. For instance, in
the case p = oo and m < N, this is the same as estimating the maximal
k = k(oo,m,N) such that a k-dimensional cube can be “embedded” in any
m-dimensional section of an N-dimensional cube; while, for p = 1, the word
“cube” should be replaced by “octahedron”.

The cases when m is proportional to N or m is o( N) were studied quite in-
tensively and many results of importance were proved, though the picture is still
far from being completely clear. For 1 < p < 2 and m < ¢N for some fixed
0 <c<1,and for p>2and m < N*/? and for p = 0o and m < log N, the func-
tion k(p, m, N') remains bounded, since in all these cases, l},v contains Euclidean
subspaces of dimension m. For 1 < p < 2, this fact was proved independently
in [F-L-M] and [K.3]. For p > 2 this is an immediate consequence of a result
from [M] (14); by another approach this was also proved in [B-D-G-J-N] (cf. also
[M-5]).

For p = 0o and N® < m < ¢N, for some 0 < 6§ and ¢ < 1, it is known that
k(co,m, N) is of order of magnitude m!/? ([F-J], for m proportional to N and
[B1], for m of power type). Recently, k = k(p,m,N) was also calculated for
p > 2 ([B-T.2]), yielding the estimate k > ¢min(m? /2, (m/N2/P)P/P=2) for some
¢ > 0, where p’ = p/(p — 1). This estimate is sharp.

The aim of the present paper is to complement this line of research by studying
the case when m is “very” large, meaning that m = N —n with n = o N). This
is of course the most natural case appearing in analysis and one expects that
subspaces of l},v of a relatively small codimension inherit more of the structure
of the underlying space l},v . It turns out that this is indeed the case. For in-
stance, already in the case p = 1, a dramatic change of behaviour occurs. While
k(1,m,N) remains bounded for m proportional to N, in the present context,
k(1, N—n, N) is behaving asymptotically as min((N/n)log(1 + N/n), N), which
is best possible. In particular, for n = log N, we get the remarkable fact that a
subspace of IV of codimension smaller than n contains I, for k proportional to
N.

We are not able to estimate k(p, N — n,N), for 1 < p < 2 and n = o(N).
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This question is related to the recent example of Bourgain [B.2] which shows
that k(p, N — n, N) is never proportional to N, for p # 2, as long as n exceeds a
power of N. However, we provide an asymptotically best lower estimate for the
type 2 constant and the Euclidean distance of a subspace X of l},v , 1< p <2,
with dim X = N — n where n < N/4. For example, if n < N2/?' then any such
subspace X has already the maximal Euclidean distance, up to a multiplicative
constant.

We pass now to the case p > 2. In this case, we prove that any (N—n)- di-
mensional subspace X of l},v contains a good copy of lzlf’ for k about (N, /n)n”'/ 2
(provided n < N/16). This result, which is not the best possible, is proved
by using a random selection method developed in [B-T.2] together with a suit-
able change of density. Finally, in the case p = oo, we estimate the function
k(co, N —n, N) in terms of some Gelfand numbers. While this estimate is sharp,
its use depends on the possibility of calculating the Gelfand numbers appearing
there. For n < log N or n larger than a power of N, precise order of these num-
bers follows from the results in [K1], [K2], [H] and [G3]. It turns out that, for
n = log N, k becomes proportional to N, as in the case of subspaces of I}.

In addition to the above results on “large” subspaces of llj,V , we have also some
results on “large” quotients of l;" . In the case, 1 < p <2, any quotient X of III,V
of dimension m > ¢N, for some ¢ > 0, contains a good copy of l;f, for k already
proportional to N (|B-K-T)). We complement these results for the case p > 2 and
prove that a quotient Y of I;,V with dimY = N —n and n < C(N/log N)*/?, for
some C < oo, must contain a (1 + ¢)-isomorphic copy of l:, with k proportional
to N. Most likely, the factor log N can be removed. A corresponding result is

proved also for quotients of 1Y .

Before we pass to the results described above, some comments on notations
are in order. We follow the standard notation in the theory of Banach spaces,
cf. e.g., [L-T] and [TJ]. In particular, for 1 < p < oo, we consider the real
sequence spaces l},v, with the norm || - ||,. For a subset o C {1,...,N}, we set
19 = {z = (2(i))|z(?) = 0 for i ¢ o}. Sometimes we denote I7 by IL”', if the
support o is clear from the context.

For finite-dimensional Banach spaces X and Y of the same dimension, denote
by d(X,Y) the Banach-Mazur distance, i.e., inf ||T|| - ||T~!||, where the infimum

runs over all isomorphisms 7 from X onto Y. For a finite-dimensional space E,
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denote by d its Euclidean distance d( E, 9™ F). Furthermore, for 1 < p, ¢ < oo,
denote by I},\”q : l},v - l;v the formal identity operator.

Let us recall the definitions of Gelfand and Kolmogorov numbers. If X and Y
are Banach spaces and T is a linear operator from X into Y then, for any n, the
n-th Gelfand number is defined by

can(T)= i

odime<n sup{||Tz|ly/llzllx :x € E C X, }.

The n-th Kolmogorov number of T is defined by
d.(T) = dh;nlg(n sup{}reli;? ITz — flly : z € X, ||z]|x < 1}.
It is easily checked that for any operator T from X into Y we have
(1.1) en(T) = d.(T7),

X =(RY|lx)andY =(RV,||-lv),and I : X =Y is the formal identity
operator, then c,(I) and d,(I) will be denoted by ¢ (X, || - |ly) and da(X, || - llv),

respectively.

2. Subspaces of l},v, for 1<p<2

The following theorem proves a conjecture of V. Milman concerning the dimension
k = &(N,n) of a copy of If that can be embedded in any subspace E of WV of
codimension n. It is interesting to point out that & becomes proportional to N

when the codimension n is of order of magnitude log N.

THEOREM 2.1: Let E C I be a subspace with dimE = N — n for some
n < N/2. There exists an integer k with

k > (1/24)* min ((N/4n)log(N/2n),N)
such that E contains a k-dimensional subspace F satisfying d(F,1}) <6.

The proof is based on estimates of Gelfand numbers of certain norms. Fix an
integer 1 < s < N and let ||| - ||, be the norm on R defined by

(2.1) llzll, = max 3 le(i)| for = =(a(i)) € RV

lol=s (=7
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It was essentially proved in [G-G] that for every n and N and for s > 4n/log N/n,

one has
(2:2) el - ,) 2 1/3.

The proof of (2.2), or of the equivalent estimate for Kolmogorov numbers, is
based on a discussion of the set of extreme points in the dual space (RY, |- |||,)*
and on a volume comparison argument.

We now pass to the proof of Theorem 2.1.

Proof of Theorem 2.1: Set s = max ([4n/log(N/2n)],1). By (2.2), there exist
z1 € E with [|z1 ||, =1 and |jz1]|; £ 3. Pick 03 C {1,...,N} such that |o;| = s
and 3., |21(i)] = 1. Let of be the complement of 51 and set E; = EN l;’i
considered as a subspace of I] i

Note that |of| = N —s > N/2, and so, using (2.2) again,

ot N
ntr (51 11L) = ents (Y201 -1H,) > 1/3.

Since codim E; < n, there exist z; € E; with [||zz||, = 1 and ||z2||; < 3.

Continuing this way, we construct by induction a sequence of vectors zy,...,2i
in E, with ¥’ = [N/2s], and a,,...,0x, mutually disjoint subsets of {1,...,N},
such that |o;| = s and TiJite; = 0,forj =1,...,k'". Moreover,forj=1,...,k'

i=1 '
one has
s, = 3 les@ =1 and laglh <3
i€o;

By Schechtman’s argument (cf. [J-S]), there is a subset n C {1,...,k'} with

l7] > k'/(3 - 2°) such that

>, iz, lls £1/2 for je€n.
‘€n
i#]

Set F = span|z;]jes- A well-known perturbation argument shows that for any

sequence of scalars (¢;)je, We have

3 leil 2 [| 3 el 2 (1/2) ) el

j€n Jj€n J€n

Finally, dim F > a(N/n)log(1 + N/n), for some a > 276372, |
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Remark: It would be interesting to know the following nearly isometric version
of Theorem 2.1. Given € > 0, what is the largest dimension k = k(N,n,€) such
that every (N —n)-dimensional subspace of I contains a k-dimensional subspace
(1 + €)-isomorphic to I}? In particular, is k proportional to N if n is of order
log N? A proof of this fact would obviously follow from a refined version of (2.2).

COROLLARY 2.2: Under the assumptions of Theorem 2.1, we have
dg > (1/24)min ((N/4n)log(N/2n), N)*/2.
On the other hand, a random (N — n)-dimensional subspace E C I}V satisfies
dg < C(N/n)"/*(log(1 + N/n))!/?,
for some universal constant C > 1. In particular, whenever F C E is a k-
dimensional subspace satisfying dp < 2, then k < 4C(N/n)log(1 + N/n).

Proof: The first part follows from Theorem 2.1. The second is a consequence of
the result in [G-G] where it was proved that for a random (N —n)-dimensional

subspace E C IV, the restriction of the formal identity operator I ; satisfies
111 21£]l < Cmin ((1/n)"/*(log(1 + N/n))'/?,1).

for some universal constant C > 1. |

The case 1 < p < 2 is considerably more difficult than that of p = 1. The
result below provides a lower estimate for the type 2 constant and hence for the
Euclidean distance of a subspace E of l’I,V , in terms of the codimension of E.
Since by [L} T2(E) < dp < (dim E)!/P~1/2 it follows in particular that the type
2 constant is of maximal order whenever codim E < N*/?', with p' = p/(p — 1).

THEOREM 2.3: Let 1 < p < 2. Any subspace E of I)Y with imE = N —n for
some n < N/4 has the type 2 constant satisfying

(2.3) Ty(E) > (1/2) min((N/n)!/? N1/P=1/2),

In particular, dg > (1/2)min((N/n)!/2, N*/P=1/2), On the other hand, for a

random (N —n)-dimensional subspace E, one has
dg < Cmin((N/n)'/?, N/P=1/2),

where C is a universal constant.
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Proof: Let Q be orthogonal projection onto E and P =1 — Q. Then

N N
(S 1P IR)? < N P=12( 3 || Pej2)
j=1 =1

= NVP=1/hg(p) = NV/P-1/2p1/2

where hs(P) denotes the Hilbert-Schmidt norm of the operator P. It follows that
N 1/2
(z ]|er||f,) ! < N2 4 NUp-1/2,1/2,
i=1

On the other hand, since

z 2 1/2 = 2\ 1/ 1/2
([13eiPelt ) ™ = (Llpesth) " =ha(p) = n,
=1 j=1

then
N 1/2
(S cs@elp de) ™ 2 wile — =t/anisa > e,
j=1

whenever n < N/4. Thus,
Ty(E) > (1/2) min ((N/n)'/?, N} /P=1/2)

as required.

The statement about random subspaces is a consequence of a result from [G2].
It is proved there that for a random (N —n)-dimensional subspace E, the restric-
tion to E of the formal identity operator I, 2 from lg,v to I satisfies

p21E: Ep — I¥|| < Cmin (Nl/p’n—l/Z’l)’

for some universal constant C. Since ||I, 3| € NY/P=1/2_ this shows the upper

estimate for the distance d(E,IY ") in this case. 1

Remark 1: Theorem 2.3 implies the lower estimate for Gelfand numbers
c,,(l;,V ,IV) (1 < p < 2) obtained in [G1]. In particular, our argument provides an

essentially simpler alternative proof of this estimate.

Remark 2: Combining an argument similar to the one above with the invertibil-

ity result from [B-T.1] we can show that under the assumptions of Theorem 2.3,
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there is k > amin((N/n)?/(3=?) N') (where a > 0 is a universal constant) such

that the subspace E contains vectors z; ...,z satisfying

k k k
(2.4) o(wip)” < | St < X
=1 i=1 =1

for every (t;) € R¥.

Remark 3: Let us recall the long standing conjectures that if £ is an N-
dimensional subspace of L, whose Euclidean distance is of maximal order, or
E is a subspace of I}},V with codimension N?/ ”I, then E must contain a copy of l,’,f
with k proportional to N. It has been recently shown by Bourgain in [B2] that
these conjectures are false. Bourgain constructed, for each value of 0 < £ < 1
and N, a subspace E of l},v of codimension n < N¢ which does not contain good
copies of I:, for k proportional to N. By Theorem 2.3, this subspace also has the

Euclidean distance of maximal order.

3. Subspaces and quotients of l,’," sfor2<p<oo

Our first result is concerned with the dimension k of good copies of l; that are
contained in subspaces of lff of small codimension, for p > 2. For technical
reasons we require the codimension n not to exceed N/16. This complements the
result from {B-T.2] concerning subspaces of l;,V of (small) dimension m = N —n,
where estimates of the right order of magnitude were obtained for those values

of m which are not considered here.

THEOREM 3.1: Let p > 2 and let
k= [(V/n)n? ?)/8.

Then every subspace E of l},v with dimE = N —n and n < N/16 contains a
k-dimensional subspace F C E such that d(F,1}) < C, where C = C(p) < oo
depends on p only.

The proof of the theorem is based on a modification of the supression theorem
from [B-T.2], Corollary 2.4. In order to describe this modification, fix numbers
n, N and K, with n < min(K, N), and consider systems of vectors {¢;}X, in
an L,(u)-space, for p > 2 and some probability measure u, which satisfy the
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following conditions:

K

(3.1) “ ZWP.‘”L <nl/271P|q],,
i=1 P

for any sequence a = (ay,4dz,...,aK) € i;(,

(3.2) ”(i ‘%‘2)1/2”& < NV,

i=1
(3.3) llpillz, <1, forall 1<i<K.
Set
s K 2/(p-2)
(34) § =min (n7? a/2-1/p), (]_\7_> ).

Then the same proof as in [B-T.2], 2.1, 2.2 and 2.3 shows the following;:

THEOREM 3.2: For every p > 2 there exists a constant D = D(p) < oo such

that, whenever {p;}X, is a sequence of elements in an L,(u)-space, for some
probability measure pu, which satisfies the conditions (3.1), (3.2) and (3.3) above,
then a random subset 0 C {1,2,...,K} of cardinality

k = [§K],

where § is defined by (3.4), contains in turn a subset oy of cardinality |o¢| > k/2
such that

| > aiwi, < Dlall,
t€og 4

for any sequence a = (@i)ico, € ll,a’l.

We also require a change of density procedure well-known to specialists (see e.g.
[B-K-T], [B-L-M], [B-T.2]), which goes back to Lewis [L]. It is stated for subspaces
of the space Ly(v) = LY(v), where v is the uniform probability measure on
{1,...,N}. Let u be another probability measure on {1, ..., N} such that u(k) >
0, for every 1 < k < N. The operator I, from Lg(v) to Ly(x), defined by

(Iuh)(G) = RG)G) B,

for j=1,...,N and h € L,(v), is an isometry from Ly(v) onto L,(p).
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LEMMA 3.3: Let1 < g< ooand0 < f < 1. Let X C LV(v) be an n-
dimensional subspace. There exists a probability measure y on {1,...,N} such
that u(j) > B/N, for every j = 1,..., N, which has the property

(3.5) N2l < AVR ll2llLo(uy, for =€ X = LX,

where A < max ((1—8)"1,2(1 — 8)~'/2). Moreover, for any p>2 and z € I,
m

(3.6) 2l Lp() < (Avm) " ||2|| La(u).

Proof of Theorem 3.1: Suppose that E is an (N — n)-dimensional subspace of
L:’(u), for some n < N/16. Recall that v is the uniform measure on {1,...,N}
and p> 2. Let X = E+ C Lﬁ(u) be the annihilator of E. Apply Lemma 3.3
to X with ¢ = p' < 2 and § = 1/2, so that A(8) < 2%/2. Let u be the cor-
responding measure on {1,...,N} and X = [, X C L) (p) the isometric image
of X, determined by Lemma 3.3. Clearly, E* is isometric to the quotient space
Lﬁ (u)/ X, hence E is isometric to some subspace E; of LY (). Infact, Ey = XL,
with the annihilator understood in the duality of L{,‘,’ (#) and LY (p); hence, also
X = (E))*. Thus, without loss of generality, we may assume that the given
space E is already E,.

We pass now to the construction. Let e;,...,eny denote the standard unit
vector basis in R™. Let P be the orthogonal projection from L;(x) onto X and
set

n={1<i<N|p{i}) <2/N}.

Since p is a probability measure it follows that || > N/2.
In the main step of the proof we show that there exists o C n with |o| > N/4
such that the vectors
z; = NY/?P pe;,

with 7 € g, satisfy the hypotheses of Theorem 3.2.
Indeed, by (3.6) we have, for every z € Lf (1),

(Zn) 27 || Pel gy
(23n)1/2-l/p

I1P=1Lp ()

AN VAN

[T

IN

@) 2P 2|, ().
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Hence, for any sequence a = (a;)ien € IL"I, we have
. < NV/P(93)1/2-1/p .
3.7 " %a,x,liL’(“) < NY/P(2°n) “ ga,e.
Next, by (3.5), we get that
[y, = el S,y Xt <
ien Loo (k) ien Loo (#)
23/221/2 gy ” s,-a:;“ <1
p{ 262 LMIZ.- }

< 4pll2Nip-i2

< B2p12-1p g,
b S lall,

IA

which, since n < N, implies that

12)1/2 < 4NV/P
(38) [ty ], < a2
i€y
Finally,
(Z”“’i"i,(g))l/z < Nl/p(z”Pes'/#(i)llzlI%,(#))llz(zﬂv)l/z
i€n i€y

< 21/2N1/p—1/2 hs (P) < (2n)1/2N1/”—1/2.

Therefore, for some subset o' C n with |o'| > ||/2 > N/4, for all i € o' we get
N2ill Loy < (230)1/2N-1/%". Since n < N/16, this yields by (3.6) that

(3.9 zille, g < (@n)V27V2 2|y < (/NP <27 <

forall i € 0.
By (3.7), (3.8), (3.9) and by Theorem 3.2 for K = |o'|, we get that for § =

n—P'(1/2=1/p) there is ¢ C o' with

(3.10) || = 8|o’|/2 > (N/n)n? /2 /8
such that

. i <
(3.1) I > aizil, < Dlaly,

for any sequence a = (a;)ics € 3,',”'.

In order to conclude the proof observe that, for i € 5,

leillz, wy = #({iN)'/? 2 (B/N)'/? 2 (2N) 7172
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Therefore, the vectors z; = N'/Pe; — z;, with i € o, satisfy
(3.12) il 2,y = (2% —21/7) /2 for icoa.

Also, by (3.11), we get that

“Za.-z,- < Nl/p ||Za,~e.~
i€o Ly i€o

+“ a;:z:.-“ < (D +2Y7)|lallp,
i 0],y <@+ 2l

for any sequence a = (a;)ics € l,l,,"l, where D is the constant from the statement
of Theorem 3.2.

Combining the latter upper p-estimate with (3.12) we get, by Corollary 3.10
from [B-T.1], that there exists 0" C ¢’ such that |o"| > c|o], for some ¢ > 0,
and span (z;)igo is C-isomorphic to l,l,””, for some constant C = C(p). Since
z; = NYP(I — P)e; € E, for all i, this completes the proof in view of (3.10).
1

Contrary to the case of subspaces of dimension n, with n < N/2, considered
in [B-T.2], the formula for k obtained in Theorem 3.1 is not the best possible.
The recent example of Bourgain [B2], already mentioned in the previous section,
shows that the maximal k for which Theorem 3.1 holds cannot be proportional

to N, whenever n is a power of N.

We pass now to the investigation of quotients of l{,v , for p > 2. It already
follows from Theorem 2.3 that if X is a quotient of l,l,V with dimX = N — n,
where n < CN?/P then the Euclidean distance of X is of maximal order, i.e.,
dx > aN'/2-1/P where C > 0 is a universal constant and a = a(C) > 0.
However, contrary to the dual situation of subspaces of I}I,V discussed in the earlier
section, such a quotient space X most likely contains a subspace of dimension k
proportional to N which is isomorphic to l,’f. We prove this fact under a slightly
stronger assumption that n < C(N/log N)?/?,

THEOREM 3.4: For every 2 < p < oo and € > 0, there exists a constant
C = C(p,¢) > 1 such that, whenever n < C(N/log N)*/?P and Y is a quotient of
I}I,V of dimension N —n, thenY contains a subspace F C Y withk =dim F > N/C
such that d(F, l:,‘) <1l+e.

The proof of the theorem requires the following analytic fact:
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PROPOSITION 3.5: Forevery 2 < p < o0 and 0 < a < 1, there exists a constant
c(p,a) > 0 such that, whenever X C i:,v is an n-dimensional subspace, with n
satisfying N/log N > ¢(p, a)n?/?, then one can find a subset o C {1,..., N} with
|o| > [(a/6)N] such that

(3.13) |Roz|l, < allz|l, forallz € X,

where R, denotes the restriction operator to o.

The proof of the proposition uses techniques developed in [B-M-LJ; it is based
on a random approach combined with entropy estimates.

Let us recall first that, for two convex subsets B and B of a linear space and
for ¢t > 0, the covering number E(B, B, t) is defined by

E(B,B,t) =min{M : 3{z;}}, sothat BcC U (zi +tB)}.
1<M

We will require upper estimates for some covering numbers in the case of unit
balls in subspaces of l”,V . In [B-M-L] it was proved that, for any 0 < 8 < 1,
there exists a constant A’ = A'(8) so that, whenever X C l},v is an n-dimensional
subspace, p is the probability measure on {1,...,N} given by Lemma 3.3 which
determines the isometry I, and satisfies (3.5) above, and B, and By, denote the
unit balls in I,(X) C L;,V(p) and in I,(X) C LY (u) respectively, then, for all
t > 0, we have that

(3.14) log E(By, Boo,t) < A'pnt~%log N.
Clearly, by increasing A in (3.5), if necessary, we may assume that both estimates
(3.5) and (3.14) are valid with the same constant A(f).

The following lemma is proved in detail in [B-L-M] (see the proof of Theorem
7.3 there).

LEMMA 3.6: Forevery2<p<o0,b>1,0< 8§ <1 and A > 1, there exists a
constant ¢'(p, b,8, A) > 0 such that if X C L{,V(y) is an n-dimensional subspace
which satisfies (3.5) and (3.14), with the constant A, and N/log N > ¢'n?/2, then
there exists a subset ¢ C {1,...,N} with M = |o| = [N/b] such that

(3.15) M=t Y eGP - 1] <6,

j€o

for every x = (z(j)) € X with ||z|, = 1.
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Now we are ready for the

Proof of Proposition 3.5: Let § =1/2,8=1-a/(6—a) and b = 3/a. Let 4 and
I, be given by Lemma 3.3 so that, in particular, u(j) > §/N,forallj =1,...,N.
Since I, is an isometry from l},v onto L;,V (p) preserving the lattice structure, it is
sufficient to prove the proposition for I,(X) C LY (u).

Set ¢(p,a) = ¢'(p, b, 6, A(B)), assume that N/log N > cnP/? and apply Lemma
3.6. So there is a subset o’ C {1,...,N} with M = |¢'| = [N/b] for which (3.15)
is satisfied. Let J = {1 < j < N: u(5) <2/N} and let J¢ be the complement of

J. Set
Ho = E 6);

jeJ*
and notice that |J|(8/N) <1 — po and |J¢|(2/N) < po. Thus,

N =7+ |7 < (1 - po)N/B + o N/2,
which further yields that
(3.16) 1% < palN/2 < N(1 = B)/(2 — ).
Set ¢ = ¢’ N J. By the definition of J and (3.15) we have

(3.17) S H@IeG)P < (2/N) D 12G)P < (2/6)(1 +6) < q,
j€o j€o!
for all z = (z(j)) € X with j|z||, = 1.
Moreover, by (3.16),

lo} > |6'| = |7 2 N/b =1~ N(1 - B)/(2 - B) = Na/6 — 1.

This concludes the proof. 1
We finally pass to the

Proof of Theorem 3.4: Fix p > 2 and £ > 0 and pick 0 < a < 1 such that
(1-a)/(1+a) =(1+¢)"". Let ¢ = c(p,a) be the constant appearing in the
statement of Proposition 3.5 and let Y be a quotient of I;V of dimension N — n
for which cn?/?2 < N/log N. Denote by Q the quotient map from l},v onto Y and
set X = ker Q. Then, by Proposition 3.5, there exists a set 0 C {1,...,N} with
|e} > aN/6 which satisfies (3.13).
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Set E = spanlejljes C l’{". We will show that F = Q(E) is the required
subspace of Y.
Clearly, k = dim E = |o| > (a/6)N. Also, for any (¢;);eo € R, one has

(318) (Z168)"" =1 tieslle 2 1Y £5(Qely-

j€o j€e j€eo
Now fix z = 3., tjej € E with |jz||, = 1. Set ¥ = 2/(1+a) > 1 and observe
that, for z € X with ||z|, > v, we have

”z‘z"p 2y-1

On the other hand, if z € X and ||z||, < 7 then, by (4.14), ||R,z|l, < av. Since
R,z = = we get that

Iz — 2l 2 lRo(z = 2)llp 2 llzllp — | Ro2llp, > 1 - ar.

Therefore,
IQzlly = inf ||z — 2|, 2 min(y - 1,1 - av).

By the choice of v and a, this yields |Qz|ly > (1 +¢)™!. Together with (3.18)
this shows that d(F,I¥) <1+e. |

4. Subspaces of I¥

In this section we investigate subspaces of I¥ of small codimension. The following
theorem provides an asymptotically precise formula for the dimension k of an
(1 + ¢)-isomorphic copy of IX, contained in such a subspace, in terms of some
Gelfand numbers. The proof is similar to the construction of Figiel and Johnson
[F-J], for n = N/2.

THEOREM 4.1: Let E C I¥ be a subspace with diimE = N — n for some
n < N/2. Let 0 < ¢ < 2. There exists an integer k with

k> (e/8)Neasra (V211 o)

such that E contains a k-dimensional subspace F satisfying d(F,1%) < 1+e.
On the other hand, for every n < N/2 there exists a subspace E C I with

dim E = N —n, such that whenever F is a subspace of E, say of dimension k,
then we have k < d(F, 1% )Nep+1(IV, | - lloo)-
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Proof: Denote cn+1(lf’/2, Il lloo) by a. It is easy to see that whenever N' > N/2,
then cn41(IV,|| - JJoo > @. Therefore, for every N' > N/2 and any subspace
G c RY' with codim G < n, there exists y € G such that

(4.1) [¥llo =1 and Jlylh < 1/a.

Fix 0 < € < 2 and take 0 < § < 1 such that (1 +6)/(1 —é) = 1+ €. Let
z1,...,Tk be a maximal set of vectors in F such that

lzjlloo =1, lzjlli £1/a, forj=1,...,k,
k
(4.2) and Hzlx,-] H <146
i=1 °°

It is well-known and easily verified that F = span(z;]5_, satisfies d(F, Ey<(1+
6)/(1—8). Indeed, for any scalar sequence (a;)}_; with maxi ;< aj| = laj,| = 1,
pick i¢ so that |zj,(%0)| = 1. Then

k
1+5Z||Zaj:tj|l Zl—'zaj:tj(io)lz:l—&
=1 *

J#io

To estimate the dimension k of F, let

k
o={1<i<N:)Y |z;(i)| > 6}

=1

Then we have,
k k
(43) lol < | 2 lest |, < Do leill < ke
Jj=1 =1

Assume that |o] < N/2 and consider the subspace G = {z € E : z(3) =
0 for i € 0} C RI°°l. Clearly, N' = |0°| > N/2 and codim G < n. Hence, there
is an y € @ satisfying (4.1). It follows that the set {z1,...,zs,y} satisfies (4.2),
thus contradicting the maximality of the z;’s. Therefore |o| > N/2 which yields,
by (4.3), that

k> (6/2)Na.
This completes the first part of the proof. For the converse part, pick a subspace
E c RY with dimE = N — n such that the restriction of the formal identity

map I o to E satisfies

1,01l = cnt1(l1,00) = Cn+1(l{vv Il lloo)s
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and let E; (resp. Eo) denote E when considered as a subspace of IV (resp. I¥).
Then, for any subspace F' C Eo fix an isomorphism T : I¥, — F onto F with
ITI T = C = d(F,%,). Let S : Ex — I* be an extension of 7! with
ISl = IT~"||. Then the identity operator idj;x on 1%, admits the factorization
iy, = S 1) o0|E o,11E T, as follows:

T I iiE I, |8 S
F B 2V E =VE, Ik,

Therefore,

>
i

tr Zdl’éo S Wl(idl‘c‘n)
< AT "1 (Too1i2) 1,001l ST S CNensa (1 1 - lloo),
thus completing the proof. 1

Let us recall some known estimates for the Gelfand numbers c,(II¥,IY). The
upper estimate was obtained in [K1], [K2], [H] and it states that

(4.4) call¥, ]l - lloo) < C min (1, (log N/n)!/2, (log N/ log(1 + n))n_l/z) :

where C is a universal constant. The lower estimate, which was proved in [G3],
states that, for some constant a > 0, one has

-1/2 log N 1z S
(45) (sl Ny 2§ ™" (meciifigmy) ~ ifn2logN
a if1<n<logN

Observe that in the ranges n < log N and N® < n < N/2, for some 6§ > 0, the
upper and the lower estimates (4.4) and (4.5) coincide (up to constants depending
on §), thus giving the right order of growth of c,(I,IY) in these cases. In fact,

a

IA

(M)l le) £ C for n<logN
a(1/6)?n= 12 < (V|| llo) £ C(1/8)n~Y%  for n>N°.

It follows that subspaces of !X of codimension n < log N contain (1 + ¢)-
isomorphic copies of I, for k proportional to N. On the other hand, in the power
type range of codimension, N < n < N/2, the maximal dimension of an (1 +¢)-
isomorphic copy of I%, contained in the subspace is of the order (¢/6)Nn~1/2
(with 0 < € < 2). This gives a counterpart to the results proved by Figiel
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and Johnson [F-J] for subspaces of I of dimension proportional to N, and by
Bourgain [B1] for subspaces of power type dimension.
For quotients of IY we have the following fact which is an immediate conse-

quence of Theorem 2.1.

COROLLARY 4.2:

Let X be a quotient of IN with dim X = N —n. There exist universal constants
0 <a<1landC > 1, and an m-dimensional subspace Y C X such that
m > a(N/n)log(N/n) and d(Y,I{*) < C.

Added in proof: Nigel Kalton recently informed us that the following almost
isometric version of Theorem 2.1 is true. Given € > 0, there is k¥ = k(N,n,¢€) >
(1/2)(N — (1 — €71)*) such that every (N — n)-dimensional subspace E C If¥
contains a k-dimensional subspace (1 + ¢)-isomorphic to If. In particular, n <
(1/2)(log(1 — €71))~'logN, then k(N,n,€) > (1/2)(N — N'/2), which tends to
N/2 as N — oo. On the other hand, k¥(N,n,e) < N/2, for all ¢ > 0 and
1<n<N.
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