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In this paper the structure of subspaces and quotients of l~  of dimension 

very close to N is studied, for 1 < p _< oo. In particular, the maximal 

dimension k = k(p, m, N) so that an arbitrary m-dimensional subspace 

X of 1N contains a good copy of l~, is investigated for m = N - o(N). In 

several cases the obtained results are sharp. 
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1. I n t r o d u c t i o n  

One of the most  interesting problems in the local theory of Banach spaces is to es- 

t imate the maximal  dimension k = k(p, m, N)  so that  an arbi t rary m-dimensional 

subspace X of 1 N, with 1 _< p _< oo, contains a good copy of I~. 

This problem has of course an obvious geometric content. For instance, in 

the case p = oo and m < N,  this is the same as estimating the maximal  

k = k(oo, re, N)  such that  a k-dimensionai cube can be "embedded" in any 

m-dimensional section of an N-dimensional cube; while, for p = 1, the word 

"cube" should be replaced by "octahedron". 

The cases when m is proportional to N or m is o(N) were studied quite in- 

tensively and many  results of importance were proved, though the picture is still 

far from being completely clear. For 1 _< p < 2 and m _< cN for some fixed 

0 < c < 1, and for p > 2 and m _< N 2/p, and for p = oo and m _< logN,  the func- 

tion k(p, m, N)  remains bounded, since in all these cases, I N contains Euclidean 

subspaces of dimension m. For 1 _< p < 2, this fact was proved independently 

in [F-L-M] and [K.3]. For p > 2 this is an immediate consequence of a result 

from [M] (14); by another approach this was also proved in [B-D-G-J-N] (cf. also 

[M-S]). 

For p -- oo and N ~ <_ m <_ cN, for some 0 < 6 and c < 1, it is known that  

k(oo, m, N)  is of order of magnitude m 1/2 ([F-J], for m proportional to N and 

[B1], for m of power type). Recently, k = k ( p , m , N )  was also calculated for 

p > 2 ([S-W.2]), yielding the estimate k >_ cmin(m #/2, (m/Na/P)P/P-2), for some 

c > 0, where p' = p/(p - 1). This estimate is sharp. 

The aim of the present paper  is to complement this line of research by studying 

the case when m is "very" large, meaning that  m = N - n with n = o(N). This 

is of course the most natural  case appearing in analysis and one expects that  

subspaces of l N of a relatively small codimension inherit more of the structure 

of the underlying space I N. It turns out that  this is indeed the case. For in- 

stance, already in the case p = I,  a dramatic change of behaviour occurs. While 

k(1, m, N)  remains bounded for m proportional to N,  in the present context, 

k(1, N - n ,  N)  is behaving asymptotically as min((Y/n) log(1 + N/n) ,  N),  which 

is best possible. In particular, for n = log N,  we get the remarkable fact that  a 

subspace of l N of codimension smaller than n contains l~, for k proportional  to 

N. 

We are not able to estimate k(p, N - n, N),  for 1 < p < 2 and n = o(N). 
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This question is related to the recent example of Bourgain [B.2] which shows 

that k(p, N - n, N )  is never proportional to N,  for p ¢ 2, as long as n exceeds a 

power of N. However, we provide an asymptotically best lower estimate for the 

type 2 constant and the Euclidean distance of a subspace X of I N, 1 < p < 2, 

with d i m X  = N - n where n < N/4 .  For example, if n < N 2/p', then any such 

subspace X has already the maximal Euclidean distance, up to a multiplicativc 

constant. 

We pass now to the case p > 2. In this case, we prove that any ( N - n ) -  di- 

mensional subspace X of l N contains a good copy of for k about (N/n).¢/2 
(provided n < N/16). This result, which is not the best possible, is proved 

by using a random selection method developed in [B-T.2] together with a suit- 

able change of density. Finally, in the case p = co, we estimate the function 

k(c¢, N - n ,  N)  in terms of some Gelfand numbers. While this estimate is sharp, 

its use depends on the possibility of calculating the Gelfand numbers appearing 

there. For n G logN or n larger than a power of N, precise order of these num- 

bers follows from the results in [K1], [K2], [H] and [G3]. It turns out that ,  for 

n = log N, k becomes proportional to N, as in the case of subspaces of I N. 

In addition to the above results on "large" subspaces of l N, we have also some 

results on "large" quotients of I N. In the case, 1 _< p G 2, any quotient X of I ff 

of dimension m > cN,  for some c > 0, contains a good copy of Ig, for k already 

proportional to N ([B-K-T]). We complement these results for the case p > 2 and 

prove that  a quotient r of 1N with d imY = N - n and n <_ C ( N / l o g N )  2/p, for 

some C < o¢, must contain a (1 + ¢)-isomorphic copy of I~, with k proportional 

to N. Most likely, the factor log N can be removed. A corresponding result is 

proved also for quotients of l N. 

Before we pass to the results described above, some comments on notations 

are in order. We follow the standard notation in the theory of Banach spaces, 

cf. e.g., [L-T] and [TJ]. In particular, for 1 < p < c¢, we consider the real 

sequence spaces lN, with the norm 11" Ilp. For a subset a C {1, . . .  ,N},  we set 

Ip = {x  = ( x ( i ) ) l x ( i )  = 0 for i ~ a}. Sometimes we denote 1~ by I 1"1, if the 

support a is clear from the context. 

For finite-dimensional Banach spaces X and Y of the same dimension, denote 

by d(X, Y) the Banach-Mazur distance, i.e., inf [IT[I. liT -1 I[, where the infimum 

runs over all isomorphisms T from X onto Y. For a finite-dimensional space E,  



176 E. GLUSKIN ET AL. Isr. J. Math. 

denote by dE its Euclidean distance d(E,  12 aim E). Furthermore, for 1 ~ p, q < co, 

denote by I~q: l~ --+ IN the formal identity operator. 

Let us recall the definitions of Gelfand and Kolmogorov numbers. If X and Y 

are Banach spaces and T is a linear operator from X into Y then, for any n, the 

n-th Gelfand number is defined by 

c , (T)  = inf sup { IJTxlly /IJxllx : x e E C X,  }. 
codlin E<n 

The n-th Kolmogorov number of T is defined by 

dn(T) = inf sup { inf ]ITx - f lJY:  x • X ,  ][zllx < 1}. 
d i m  F<n IEF  

It is easily checked that for any operator T from X into Y we have 

(1.1) c , (T)  = d,(T*),  

If X -- (R N, I[" I[X) and Y --- (R N, I1" IIY), and I :  X --* Y is the formal identity 

operator, then c,(  I) and d , (  I) will be denoted by c , (X ,  II" HY) and d , (X ,  H" IIY), 

respectively. 

2. Subspaces of  l~,  for 1 < p < 2 

The following theorem proves a conjecture of V. Milman concerning the dimension 

k = k(N,  n) of a copy of l~ that can be embedded in any subspace E of l~ of 

codimension n. It is interesting to point out that k becomes proportional to N 

when the codimension n is of order of magnitude log N. 

THEOREM 2.1: Let E C ll N be a subspace with d i m E  = N - n for some 

n < N/2.  There exists an integer k with 

k >_ (1/24) 2 min ( (Y /4n ) log (g l en ) ,  N)  

such that E contains a k-dimensional subspace F satisfying d(F, 1~) < 6. 

The proof is based on estimates of Gelfand numbers of certain norms. Fix an 

integer 1 < s < g and let I[J" [[Js be the norm on R N defined by 

(2.1) [Jlxl[J~ = max ~ lx(i)l for x = (x(i)) ~ R N. 
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It was essentially proved in [G-G] that for every n and N and for s >_ 4n/log N/n ,  

one has 

(2.2) ~.(l~, II1" Ill,) ~- 1/3. 

The proof of (2.2), or of the equivalent estimate for Kolmogorov numbers, is 

based on a discussion of the set of extreme points in the dual space (R N, II1" Ill,)* 

and on a volume comparison argument. 

We now pass to the proof of Theorem 2.1. 

Proof  of Theorem 2.1: Set s = max ([4n/log(N/2n)], 1). By (2.2), there exist 

11 e E with Illx~lll, = x and Itx~ll~ _< 3. Pick al c {1 , . . .  ,N} such that  lull = s 

and E~e.l I11(i)1 -- 1. Let a~ be the complement of al and set Ez = E N l~ [ 

considered as a subspace of l~ ~. 

Note that  la~l = g - s > g/2, and so, using (2.2) again, 

Cn+l(l~ '~, II1" III.) >- c.+x( tN/2, II1" III.) > 1/3. 

Since eod imE2 < n, there exist 12 E E2 with III12111, = x and Ilxzlla < 3. 

Continuing this way, we construct by induction a sequence of vectors 1 1 , . . . ,  xk, 

in E,  with k' = [N/2s], and a~,. . .  , a v ,  mutually disjoint subsets of {1, . . .  ,N} ,  

such that fuji = s and Xjll.j~-:,,, = O, for j = 1 , . . . ,  k'. Moreover, f o r j  = 1 , . . . ,  k' 

one has 

IIx~l, jll~ = ~ Ixi(i)l-- 1 and IlxJll~ -< 3. 
iEaj 

By Scheehtman's argument (cf. [J-S]), there is a subset 0 C { 1 , . . . ,  k'} with 

I01 >- v / ( 3 . 2 5 )  such that 

II~il.,lla < 1/2 for j E r/. 

Set F = span [xj]je~. A weU-known perturbation argument shows that for any 

sequence of scalars (cj)je ~ we have 

3 Z Ic~l _> II ~ ~,~111 >- (1/2) Icil. 
J ~  J~n jEn 

Finally, d i m F  > a(N/n)log(1 + N/n) ,  for some a _> 2-e3 -2. ! 
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Remark: It would be interesting to know the following nearly isometric version 

of Theorem 2.1. Given e > 0, what is the largest dimension k = k(N, n, e) such 

that  every (N -n)-dimensional subspace of l~ contains a k-dimensional subspace 

(1 + @isomorphic to Ilk? In particular, is k proportional to N if n is of order 

log N? A proof of this fact would obviously follow from a refined version of (2.2). 

COROLLARY 2.2: Under the assumptions of Theorem 2.1, we have 

dE _> (1/24)re_in ((N/4n)log(N/2n), N) '/2 . 

On the other hand, a random (N - n)-dimensional subspace E C 1~ satisfies 

dE < C(NIn)il2(log(1 + NIn))'/L 

for some universal constant C >_ 1. In particular, whenever F C E is a k- 

dimensional subspace satisfying d F 5 2, then k < 4C ( N / n ) log(1 + N/n). 

Proof: The first part follows from Theorem 2.1. The second is a consequence of 

the result in [G-G] where it was proved that for a random (N-n)-dimensional  

subspace E C l~, the restriction of the formal identity operator/1,2 satisfies 

II&, tEII < Cmin  ((1/n)l/2(log(1 + N/n))l/2,1). 

for some universal constant C >_ 1. | 

The case 1 < p < 2 is considerably more difficult than that of p = 1. The 

result below provides a lower estimate for the type 2 constant and hence for the 

Euclidean distance of a subspace E of l~, in terms of the codimension of E. 

Since by ILl T2(E) < dE < (dimE) lIp-l/2, it follows in particular that the type 

2 constant is of maximal order whenever codimE < N 2/f  , with p' = p/(p - 1). 

THEOREM 2.3: Let 1 < p < 2. Any subspace E of l~ with d i m E  = N - n for 

some n < N/4 has the type 2 constant satisfying 

(2.3) T2(E) >_ (1/2) min((NIn) '/2, N'/P-'/2).  

In particular, dE > (1/2)min((N/n)l/2,N'/p-1/2). On the other hand, for a 

random ( N-n)-dimensional subspace E, one has 

dE < C min((N/n) '12, N 'Ip-'I2), 

where C is a universal constant. 
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Proof." Let Q be orthogonal projection onto E and P = I - Q. Then 

N N 

( ~ IlPes I1~,)'/~ < s,l,- ,12( ~_, IIP~sll~)'/2 
j=l j=l 
= N1/ '- l /2hs(P) = N1/n-1/2nl/2, 

where hs(P) denotes the Hilbert-Schmidt norm of the operator P. It follows that 

N 
( g  iiQ~sll~)'/2 < N'l~ + Nil,-li~n,i~. 
j=l 

On the other hand, since 

i N 112 N ( I Ig* ,P*s l l~d*)  : (g l lP, , l l ] )  '/2=hs(P)=,,' iL 
j=l j=l 

then (/. ),,2 
II ~sQ~sll~ d~ >_ N l l "  - N l l ' - i l 2 n  112 > Nil '~2, 

j=l 

whenever n < N/4. Thus, 

T2(E) >_ (1/2) rain ((N/n) 112, N ' / ' - l / 2 ) ,  

as required. 

The statement about random subspaces is a consequence of a result from [G2]. 

It is proved there that for a random (N-n)-dimensional  subspace E,  the restric- 

tion to E of the formal identity operator It,2 from l N to 12 N satisfies 

IIZ,,~IE : E, --, l~ll < Cmin (N l lP 'n  - '12, 1), 

for some universal constant C. Since -1 [[Ip,21[ -< N1/P-1/2, this shows the upper 

estimate for the distance d(E, l g - " )  in this case. | 

Remark 1: Theorem 2.3 implies the lower estimate for Gelfand numbers 

cn(l N, l N) (1 < p < 2) obtained in [G1]. In particular, our argument provides an 

essentially simpler alternative proof of this estimate. 

Remark 2: Combining an argument similar to the one above with the invertibil- 

ity result from [B-T.1] we can show that under the assumptions of Theorem 2.3, 
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there is k > amin((N/n)  p/(2-v), N) (where a > 0 is a universal constant) such 

that  the subspace E contains vectors xl . . . ,  xk satisfying 

k 1/p k k 

(2.4) a(y]~ [ti[ p) <_ i ~  1 tixi v <_ y~ ]ti[, 
i=1 = i=1 

for every (ti) E R k. 

Remark 3: Let us recall the long standing conjectures that if E is an N- 

dimensional subspace of Lp whose Euclidean distance is of maximal order, or 

E is a subspace of l N with codimension N 2Iv', then E must contain a copy of I~ 

with k proportional to N. It has been recently shown by Bourgain in [B2] that 

these conjectures are false. Bourgain constructed, for each value of 0 < ~ < 1 

and N, a subspace E of 1N of codimension n < N ~ which does not contain good 

copies of l~, for k proportional to N. By Theorem 2.3, this subspace also has the 

Euclidean distance of maximal order. 

3. Subspaces and quotients of  I N, for 2 < p < c¢ 

Our first result is concerned with the dimension k of good copies of l~ that are 

contained in subspaces of Ip N of small codimension, for p > 2. For technical 

reasons we require the codimension n not to exceed N/16. This complements the 

result from [B-T.2] concerning subspaces of l~ of (small) dimension m = N - n, 

where estimates of the right order of magnitude were obtained for those values 

of m which are not considered here. 

THEOREM 3.1: Let p > 2 and let 

k = [ (NIn)n f l~]18 .  

Then every subspace E of 1~ with d i m E  = N - n and n < N/16 contains a 

k-d/mensiona/subspace F C E such that d(F, l~) < C, where C = C(p) < 

depends on p only. 

The proof of the theorem is based on a modification of the supression theorem 

from [B-T.2], Corollary 2.4. In order to describe this modification, fix numbers 

{~oi}i=x in n, N and K,  with n < min(K, N),  and consider systems of vectors K 

an Lp(p)-space, for p > 2 and some probability measure p, which satisfy the 
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following conditions: 

K 

< n' /2- ' / ' l la l lp,  (3.1) ai,illL, 

for any sequence a = ( a l ,  a 2 , . . . ,  aK) E I K, 

K 

( I ,1 oo -< 
i = l  

(3.3) [[~i[[Lp ~ 1, for all 1 < i < K. 

Set 

(3.4) 6 = m i n  (n -p'(1/2-1/p), ). 

Then the same proof as in [B-T.2], 2.1, 2.2 and 2.3 shows the following: 

THEOREM 3.2: For every p > 2 there exists a constant D = D(p) < ~ such 

that, whenever K {Ti}i=x is a sequence of elements in an Lp(t~)-space, /'or some 

probability m e a s u r e  f,, which satisfies the conditions (3.1), (3.2) and (3.3) above, 

then a random subset a C {1, 2 , . . . ,  K}  of cardinality 

k = [6KI,  

where 6 is defined by (3.4), contains in turn a subset ao of caxdinality [ao[ > k/2 

such that 

,~o ai•i DIlall p, .Lp <- 

~'or any sequence a = (ai)iEao E lip ~°1. 

We also require a change of density procedure well-known to specialists (see e.g. 

[B-K-T], [B-L-M], [B-T.21) , which goes back to Lewis [L]. It is stated for subspaces 

of the space L,(u) = Lf (u ) ,  where u is the uniform probability measure on 

{1, . . .  ,N} .  Let ~ be another probability measure on {1, . . .  ,N} such that #(k) > 

0, for every 1 < k < N. The operator I ,  from Lq(u) to Lq(~), defined by 

(I~,h)(j) = h(j)[u(j)/#(j)] 1N, 

for j = 1 , . . . ,  N and h E L,(u), is an isometry from Lq(v) onto Lq(p). 
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LEMMA 3.3: Let 1 < q < ov and 0 < [3 < 1. Let X C LN(v) be an n- 

dimensional subspace. There exists a probability measure p on {1 , . . . ,  N} such 

that p(j) > ~/N,  for every j = ! , . . . ,  N, which has the property 

(3.5) ]l~cllLoo(~) < AV~ IIzIIL,(~), for x E )~ = Ij, X,  

< max ((1 - fl)-1,2(1 - fl)-,/2). Moreover, for any p > 2 and x e I x, where A 

(3.6) IlxllL/~,) _< (Av/-ff) x-21' IlxllL2(p). 

Proof of Theorem 3.1: Suppose that E is an (N -n)-dimensional  subspace of 

LN(v), for some n < N/16. Recall that v is the uniform measure on {1, . . .  ,N} 

and p > 2. Let X = E "t" C LNp,(v) be the annihilator of E. Apply Lemma 3.3 

t o X  w i t h q  = p '  < 2 a n d f l  = 1/2, so that A(/~) < 2 s/2, Let p b e t h e c o r -  

responding measure on {1, . . .  ,N} and )~ = I~,X C L~(p) the isometric image 

of X,  determined by Lemma 3.3. Clearly, E* is isometric to the quotient space 

L ~ ( p ) / X ,  hence E is isometric to some subspace E 1 of  Lp/V(~M). In fact, E 1 = .X±, 

with the annihilator understood in the duality of L~(p) and Lff(p); hence, also 

)~ = (El)  ±. Thus, without loss of generality, we may assume that  the given 

space E is already El.  

We pass now to the construction. Let e l , . . . ,  eN denote the standard unit 

vector basis in R N. Let P be the orthogonal projection from L2(p) onto X and 

set 

T/= {1 < i < g [ p({i}) < 2/g} .  

Since p is a probability measure it follows that 1ol _> N/2. 
In the main step of the proof we show that there exists a C ~/with lal > N/4 

such that the vectors 

xi = N1/VPei, 

with i E a, satisfy the hypotheses of Theorem 3.2. 

Indeed, by (3.6) we have, for every x E L~(#), 

IIP=IILp(~) _< (2%)l/z-1/PlIPzlIL,(,) 
< (2an) 112-1/p II IIL,(.) 
<-- (2an) 1/2-1/P IlzllL,(~). 
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Hence, for any sequence a = (ai)ie~ • l/¢1, we have 

I ~..  - < 2sl2n'l~-'lv I l a l l p  • (3.7) ' i " ~ ° ' ~ ' l L '  < N'/'(2'n)l/~-l/'ll~a/~/ L,(.) 

Next, by (3.5), we get that 

I ( ~  I z / l ~ ) ' / ~  IL,~(.) = 
iEl l  

sup{ .SiZi Loo(#) "~- '~8i -- 

-- JEt/ L~(#) -- 

<_ 4rtl/2.~ I/p-'[2, 

which, since rt < N, implies that 

.2 1/2 (3.8) (Y~ Iz,I ) L~(#) < 4"N1/p" 
iEI1 

Finally, 

( ~  I1~/11~,,(,,~) '/~ < N ' / , ' ( ~  IIP~//~,(i)'/~ll~,¢,,))'/~(2/lv)'/~ 
JEll iEll 

< 21/2N 1~r-l/2 hs (P)  < (2n)l/2Nl/V-1/2. 

Therefore, for some subset a '  C t /with  I~'1 -> 171/2 _> N/4, for all i • a '  we get 

IIz/lln~(.) < (2Sn) ~/2N-~/f.  Since n < N/16, this yields by (3.6) that  

(3.9) IIz/llL.(.) < (2~n) ' / 2 - ' / p  IIz/lln,¢.) < (2~n/NY I¢ <- 2 - ' / ¢  < 1, 

for all i E a ' .  

By (3.7), (3.8), (3.9) and by Theorem 3.2 for K = I~'1, we set that  for ~ = 

rt-f(1/2-1/v), there is ~r C ~" with 

(3.10) I~1 = 61~'1/2 > (~Vl,~)n"'/21s 

such that  

II ° '" IIn.,.) <- "°"" 

for any sequence a ---- (ai)iEa E l laj. 
In order to conclude the proof observe that,  for i E T/, 

II~'lln,(,,) = /{ i}) ' /"  > (I~IN) '/p > (2N) -1/p. 
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Therefore, the vectors zi = N1/Vei - zi ,  with i E a, satisfy 

(3.12) [[zi[[L,(p) >_ (21/p' - 21/P)/2, for i E a. 

Also, by (3.11), we get that 

~ a i z i  L,O,) (--N1/v i~Eaaiei L,O,) + i~Eaalxi Lv(J,) (- (D-b 21/v)[la[[v' 

for any sequence a = (ai)iea E l~ a], where D is the constant from the statement 

of Theorem 3.2. 

Combining the latter upper p-estimate with (3.12) we get, by Corollary 3.10 

from [B-T.1], that there exists a"  C a '  such that ]a"[ > c[a[, for some c > 0, 

and span(zi)ie~,, is C-isomorphic to l~ ~'l, for some constant C = C(p). Since 

z~ = N~/V(I - P)e~ E E, for all i, this completes the proof in view of (3.10). 

| 

Contrary to the case of subspaces of dimension n, with n <_ N/2 ,  considered 

in [B-T.2], the formula for k obtained in Theorem 3.1 is not the best possible. 

The recent example of Bourgain [B2], already mentioned in the previous section, 

shows that the maximal k for which Theorem 3.1 holds cannot be proportional 

to N, whenever n is a power of N. 

We pass now to the investigation of quotients of l N, for p > 2. It already 

follows from Theorem 2.3 that if X is a quotient of l N with d im X  = N - n, 

where n <_ C N  2Iv, then the Euclidean distance of X is of maximal order, i.e., 

d x  >_ aNU2-1/v,  where C > 0 is a universal constant and a = a(C) > O. 

However, contrary to the dual situation of subspaces of l~ discussed in the earlier 

section, such a quotient space X most likely contains a subspace of dimension k 

proportional to N which is isomorphic to l~. We prove this fact under a slightly 

stronger assumption that n <_ C ( N /  log N)  ~/p. 

THEOREM 3.4: For every 2 < p < oo and e > 0, there exists a constant 

C = C(p, ~) > 1 such that, whenever n ~_ C (N / log  N)  2/v and Y is a quotient of  

lv N of dimension N - n ,  then Y contains a subspace F C Y w/th k = dim F >_ N /  C 

such that d(F, lg) < 1 + 
The proof of the theorem requires the following analytic fact: 
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PROPOSITION 3.5: For every 2 < p < cx~ and 0 < a < 1, there exists a constant 

c(p, a) > 0 such that, whenever X C l~ is an n-dimensioned subspace, with n 

satisfying N~ log N > c(p, a )n p /2 , then one can find a subset a C {1 , . . . ,  N} with 

I~1 >_ [(a/6)N] such that 

(3.13) IIR~xllp <__ allxllp for all z e X, 

where Ra denotes the restriction operator to a. 

The proof of the proposition uses techniques developed in [B-M-L]; it is based 

on a random approach combined with entropy estimates. 

Let us recall first that, for two convex subsets B and /3  of a linear space and 

for t > 0, the covering number E(B ,  B, t) is defined by 

E(B,[3 , t )  : r a i n { M :  3{Xi}iM1 SO that /} C ~.J (xi + t B) } .  
I_<M 

We will require upper estimates for some covering numbers in the case of unit 

balls in subspaces of Ip N. In [B-M-L] it was proved that, for any 0 < fl < 1, 

there exists a constant A' = A'(fl)  so that,  whenever X C l N is an n-dimensional 

subspace, # is the probability measure on {1 , . . . ,  N} given by Lemma 3.3 which 

determines the isometry I# and satisfies (3.5) above, and Bp and Boo denote the 

unit balls in I~,(X) C LN(/~) and in I~(X)  C LN(#) respectively, then, for all 

t > 0, we have that 

(3.14) log E(Bp, Boo, t) < A'pnt -2 log N. 

Clearly, by increasing A in (3.5), if necessary, we may assume that  both estimates 

(3.5) and (3.14) are valid with the same constant A(fl). 

The following lemma is proved in detail in [B-L-M] (see the proof of Theorem 

7.3 there). 

LEMMA 3.6: For every 2 < p < ~ ,  b > 1, 0 < 5 < 1 and A > 1, there exists a 

constant c'(p, b, 5, A) > 0 such that i f  X C LN(#)  is an n-dimensional subspace 

which satis~qes (3 .5)and (3.14), with the constant A, and N /  log N > c'n p/2, then 

there exists a subset a C {1 , . . . ,  N} with M = I~1 = [N/b] such that 

(3.15) M -1 ~ Ix(j)[ p - 1 < 5, 
jEa 

for every x = (x( j ) )  e X with Ilxllp = 1. 



186 E. GLUSKIN ET AL. Isr. J. Math. 

Now we are ready for the 

Proof of Proposition 3.5: Let 5 = 1/2, fl - 1 - a / ( 6 - a )  and b = 3/a. Let p and 

I~ be given by Lemma 3.3 so that, in particular, p( j )  > fl/N, for all j = 1 , . . . ,  N. 

Since I~ is an isometry from IN onto L~(p)  preserving the lattice structure, it is 

sufficient to prove the proposition for I~(X) C L~(p). 

Set c(p, a) = c'(p, b, 5, A(/~)), assume that N/log N >_ cnP/2 and apply Lemma 

3.6. So there is a subset a' C {1, . . .  ,N} with M = ]a'] = [N/b] for which (3.15) 

is satisfied. Let J = {1 < j < N : #( j )  < 2IN} and let j c  be the complement of 

J .  Set 
= 

j E J  ~ 

and notice that IJI (MN)  < 1 - ~o and Idf l (2 /N)  <_ ~o. Thus, 

N = IJl + IJf l  < ( I  - ~,o)N/B + poN/2 ,  

which further yields that 

(3.16) IJ:l < l, oN/2 <_ N ( I  - 8 ) I ( 2  - 8).  

Set a = a '  N d.  B y  the definition of d arid (3.15) we have 

(3.17) ~ ~,(j)Ix(J)l p _< (2/N) ~ Ix(J)l ' _< (21b)(1 + 6) <_ a, 
jEa jEa' 

for an  ~ --  ( ~ ( j ) )  e x w i t h  Ilxlip --  1. 

Moreover, by (3.16), 

I,,I > I,,'I - IJf l  >_ N / b  - 1 - N ( I  - ,B)l(2 - 8) > N a l 6  - I .  

This concludes the proof. | 

We finally pass to the 

Proof  of Theorem 3.4: Fix p > 2 and e > 0 and pick 0 < a < 1 such that 

(1 - a ) / (1  + a) = (1 + e) -1. Let c = c(p,a) be the constant appearing in the 

statement of Proposition 3.5 and let Y be a quotient of I~ of dimension N - n 

for which cn p/2 ~_ N/log N. Denote by Q the quotient map from 1~ onto Y and 

set X = kerQ. Then, by Proposition 3.5, there exists a set a C {1, . . .  ,N}  with 

la[ > aN/6  which satisfies (3.13). 
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Set E = span [ej]jea C l N. We will show that F = Q(E) is the required 

subspace of Y. 

Clearly, k = dimE = [a[ > (a/6)N. Also, for any (tj)jc~ E Rl~l, one has 

jEO" jEa' jEa' 

Now fix x = ~ j e a  tie1 • E with HxHp -- 1. Set 7 = 2 / (1  + a) > 1 and observe 

that,  for z • X with HzHp > 7, we have 

IIx - z l l ,  > ~ - 1. 

On the other hand, if z • X and Ilzllp < 7 then, by (4.14), IIRazlt v < a 7. Since 

R~x = x we get that 

I1~ - ~11, >-- I I R . ( ~  - z ) l l ~  >_ I1~11, - I I R ~ z l l ,  > 1 - a T .  

Therefore, 

IIQxllY = inf IIx - zllp > rain(7 - 1,1 - aT). 
zEX 

By the choice of 7 and a, this yields IIQ~IIY -> (1 + ~)- ' .  Together with (3.18) 

this shows that d(F, l~) _< 1 + ~. | 

4. Subspaces of  l N 

In this section we investigate subspaces of 1~ of small codimension. The following 

theorem provides an asymptotically precise formula for the dimension k of an 

(1 -t- ~)-isomorphic copy of l~  contained in such a subspace, in terms of some 

Gelfand numbers. The proof is similar to the construction of Figiel and Johnson 

[F-J], for n = N/2 .  

THEOREM 4.1: Let E C l N be a subspace wi~h d i m e  = N - n  for some 

n < N/2 .  Let 0 < e < 2. There exists an integer k with 

k > (~/8)gcn+~(l N/2' II" II~) 

such that E contains a k-dimensioned subspace F satisfying d(F, l~ )  < 1 + e. 

On the other hand, for every n < N / 2  there exists a subspace E C l~  with 

d i m e  = N - n, such that whenever F is a subspace of  E ,  say of  dimension k, 

then we have k < d(F, l~)gcn+a(l  N, I1" tl~)" 
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Proo~ Denote Cn+l(IN1/2, I1" I1~¢) by a. It is easy to see that whenever N' >_ N/2,  
N' then c,+l(11 , I1" I1~ >- ~. Therefore, for every N' >_ N/2  and any subspaee 

G C R N' with codimG < n, there exists y E G such that 

(4.1) Ilylloo = 1 and I1 111 < 1/a .  

F i x 0  < ¢ < 2 and take 0 < ~ < 1 such tha t  ( 1 + ~ ) / ( 1 - ~ )  = 1 + ¢ .  Let 

x l , . . . ,  zk be a maximal set of vectors in E such that 

II sllo¢ = 1, II sll, < forj=l , . . . ,k,  
k 

It  is well-known and easily verified that F = spall[xj]k-_l satisfies d(F, l~ )  < (1 + 

6) / (1 -~) .  Indeed, for any scalar sequence (aj)~= 1 with maxl<_j<_k [all = lalo I = 1, 

pick i0 so that Ix¢0(i0)l = 1. Then 

k 

> 1 ] E aixi(i°)[ > 1 - &  1+ ~ > ajxj o o -  - 
= j ~ j o  

To estimate the dimension k of F,  let 

k 

a = {1 < i < N :  E I~ i ( i ) l  > '~}. 
j = l  

Then we have, 

(4.3) 

k k 

< Z : l - s l  , -<  ll,sll, < k/o,. 
l j =  j=l 

Assume that I~t < N/2 and consider the subspace G = {x E E : x(i) = 

0 for i E a} C R I~''1. Clearly, g '  = ]a c] _> N/2 and codlinG < n. Hence, there 

is an y E G satisfying (4.1). It follows that the set {Xl , . . . ,  xk, y} satisfies (4.2), 

thus contradicting the maximality of the xj's. Therefore [a[ >_ N/2 which yields, 

by (4.3), that  

k > (~ /2 )ga .  

This completes the first part of the proof. For the converse part,  pick a subspace 

E C R N with dim E = N - n such that the restriction of the formal identity 

map I1,~ to E satisfies 

II.rl,~lEII = c.+,(.r,,oo) = c . + l ( f f ,  I1" Iloo), 
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and let E1 (resp. Eoo) denote E when considered as a subspace of 1N (resp. IN). 

Then, for any subspace F C Eoo fix an isomorphism T : I~ --, F onto F with 

IITII liT-111 c d(F, k = = lo¢ ). Let S : Eoo --~ l~  be an extension of T -1 with 

IlSll = l IT- '  II. Then the identity operator idz~ on l~  admits the faetorization 

it~ = S Il,oolE Ioo,llE T, as follows: 

Therefore, 

k 

i k  T I¢o,1 ~E Ii,oo ~E k , Eoo E1 Eoo _~s loo. 

= tr idt~ < 7rl (idt~) 

_< IITII ~rl(-ro~,llE) IlZl,o~IEII IISII --- CNCn+l( lN, I1" Iloo), 

thus completing the proof. II 

Let us recall some known estimates for the Gelfand numbers c,~(l N, 1N). The 

upper estimate was obtained in [K1], [K2], [H] and it states that 

(4.4) c,(ll N, I1" I1~) < c min (1, (log NIn)l/2,(log N/log(1 + n))n-1/2), 

where C is a universal constant. The lower estimate, which was proved in [G3], 

states that, for some constant a > 0, one has 

(4.5) c , ( t~, l l  I1oo) >- / an-l/2 ( l°lIN )1/2 • \losO+-/losN} if n > logN 

( a if 1 < n < logN 

Observe that in the ranges n < log N and N 6 < n < N/2, for some ~ > 0, the 

upper and the lower estimates (4.4) and (4.5) coincide (up to constants depending 

on ~), thus giving the right order of growth of c,,(ll N, l N) in these cases. In fact, 

a _< e n ( t ~ , l l ' l l ~ )  _< C for n < l o g N  

a(ll~) 1/2n-'/2 < ca( IN,II" 11oo) _< o (1 /~ )n  -1/2 for n >_ g ' .  

It follows that subspaees of lNoo of eodimension n < log N contain (1 + ¢)- 

isomorphic copies of l~  for k proportional to N. On the other hand, in the power 

type range of codimension, N s < n < N/2, the maximal dimension of an (1 + ¢)- 

isomorphic copy of l~  contained in the subspace is of the order (c/~)Nn -1/~ 
(with 0 < e < 2). This gives a counterpart to the results proved by Figiel 
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and Johnson [F-J] for subspaces of IN~ of dimension proportional to N, and by 

Bourgain [B1] for subspaces of power type dimension. 

For quotients of l N we have the following fact which is an immediate conse- 

quence of Theorem 2.I. 

COROLLARY 4.2: 

Let X be a quotient of l  N with d imX = N - n .  There exist universal constants 

0 < a < 1 and C > 1, and an m-dimensionalsubspace Y C X such that 

rn > a(N/n)  log(N/n) and d(Y, I~') < C. 

Added in proof: Nigel Kalton recently informed us that the following almost 

isometric version of Theorem 2.1 is true. Given e > 0, there is k = k(N,  n, e) >_ 

(1 /2)(N - (1 - e - l )  ") such that every (N - n)-dimensional subspace E C l N 

contains a k-dimensional subspace (1 + e)-isomorphic to l~. In particular, n _< 

(1/2)(log(1 - e -1) ) - t logN,  then k(N,n ,e )  >_ (1/2)(N - Y ' /2 ) ,  which tends to 

N / 2  as N ~ c~. On the other hand, k (N ,n , e )  <_ N/2,  for all e > 0 and 

l < n < N .  
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