SUBSPACES OF l_p^N OF SMALL CODIMENSION

BY

E. D. GLUSKIN

Department of Mathematics Raymond and Beverly Sackler Faculty of Exact Sciences Tel Aviv University, Tel Aviv, Israel

AND

N. TOMCZAK-JAEGERMANN

Department of Mathematics, University of Alberta Edmonton, Alberta, Canada T6G 2G1

AND

L. TZAFRIRI

Department of Mathematics, The Hebrew University Jerusalem 91904, Israel

ABSTRACT

In this paper the structure of subspaces and quotients of l_p^N of dimension very close to N is studied, for $1 \le p \le \infty$. In particular, the maximal dimension k = k(p, m, N) so that an arbitrary *m*-dimensional subspace X of l_p^N contains a good copy of l_p^k , is investigated for m = N - o(N). In several cases the obtained results are sharp.

Received January 31, 1991 and in revised form October 31, 1991

1. Introduction

One of the most interesting problems in the local theory of Banach spaces is to estimate the maximal dimension k = k(p, m, N) so that an arbitrary *m*-dimensional subspace X of l_p^N , with $1 \le p \le \infty$, contains a good copy of l_p^k .

This problem has of course an obvious geometric content. For instance, in the case $p = \infty$ and m < N, this is the same as estimating the maximal $k = k(\infty, m, N)$ such that a k-dimensional cube can be "embedded" in any *m*-dimensional section of an N-dimensional cube; while, for p = 1, the word "cube" should be replaced by "octahedron".

The cases when m is proportional to N or m is o(N) were studied quite intensively and many results of importance were proved, though the picture is still far from being completely clear. For $1 \leq p < 2$ and $m \leq cN$ for some fixed 0 < c < 1, and for p > 2 and $m \leq N^{2/p}$, and for $p = \infty$ and $m \leq \log N$, the function k(p, m, N) remains bounded, since in all these cases, l_p^N contains Euclidean subspaces of dimension m. For $1 \leq p < 2$, this fact was proved independently in [F-L-M] and [K.3]. For p > 2 this is an immediate consequence of a result from [M] (14); by another approach this was also proved in [B-D-G-J-N] (cf. also [M-S]).

For $p = \infty$ and $N^{\delta} \leq m \leq cN$, for some $0 < \delta$ and c < 1, it is known that $k(\infty, m, N)$ is of order of magnitude $m^{1/2}$ ([F-J], for m proportional to N and [B1], for m of power type). Recently, k = k(p, m, N) was also calculated for p > 2 ([B-T.2]), yielding the estimate $k \geq c \min(m^{p'/2}, (m/N^{2/p})^{p/p-2})$, for some c > 0, where p' = p/(p-1). This estimate is sharp.

The aim of the present paper is to complement this line of research by studying the case when m is "very" large, meaning that m = N - n with n = o(N). This is of course the most natural case appearing in analysis and one expects that subspaces of l_p^N of a relatively small codimension inherit more of the structure of the underlying space l_p^N . It turns out that this is indeed the case. For instance, already in the case p = 1, a dramatic change of behaviour occurs. While k(1,m,N) remains bounded for m proportional to N, in the present context, k(1,N-n,N) is behaving asymptotically as $\min((N/n)\log(1+N/n),N)$, which is best possible. In particular, for $n = \log N$, we get the remarkable fact that a subspace of l_1^N of codimension smaller than n contains l_1^k , for k proportional to N.

We are not able to estimate k(p, N - n, N), for 1 and <math>n = o(N).

This question is related to the recent example of Bourgain [B.2] which shows that k(p, N - n, N) is never proportional to N, for $p \neq 2$, as long as n exceeds a power of N. However, we provide an asymptotically best lower estimate for the type 2 constant and the Euclidean distance of a subspace X of l_p^N , 1 ,with dim <math>X = N - n where n < N/4. For example, if $n < N^{2/p'}$, then any such subspace X has already the maximal Euclidean distance, up to a multiplicative constant.

We pass now to the case p > 2. In this case, we prove that any (N-n)- dimensional subspace X of l_p^N contains a good copy of l_p^k , for k about $(N/n)n^{p'/2}$ (provided $n \leq N/16$). This result, which is not the best possible, is proved by using a random selection method developed in [B-T.2] together with a suitable change of density. Finally, in the case $p = \infty$, we estimate the function $k(\infty, N-n, N)$ in terms of some Gelfand numbers. While this estimate is sharp, its use depends on the possibility of calculating the Gelfand numbers appearing there. For $n \leq \log N$ or n larger than a power of N, precise order of these numbers follows from the results in [K1], [K2], [H] and [G3]. It turns out that, for $n = \log N$, k becomes proportional to N, as in the case of subspaces of l_1^N .

In addition to the above results on "large" subspaces of l_p^N , we have also some results on "large" quotients of l_p^N . In the case, $1 \le p \le 2$, any quotient X of l_p^N of dimension $m \ge cN$, for some c > 0, contains a good copy of l_p^k , for k already proportional to N ([B-K-T]). We complement these results for the case p > 2 and prove that a quotient Y of l_p^N with dim Y = N - n and $n \le C(N/\log N)^{2/p}$, for some $C < \infty$, must contain a $(1 + \varepsilon)$ -isomorphic copy of l_p^k , with k proportional to N. Most likely, the factor $\log N$ can be removed. A corresponding result is proved also for quotients of l_∞^N .

Before we pass to the results described above, some comments on notations are in order. We follow the standard notation in the theory of Banach spaces, *cf. e.g.*, [L-T] and [TJ]. In particular, for $1 \leq p \leq \infty$, we consider the real sequence spaces l_p^N , with the norm $\|\cdot\|_p$. For a subset $\sigma \subset \{1, \ldots, N\}$, we set $l_p^{\sigma} = \{x = (x(i)) | x(i) = 0 \text{ for } i \notin \sigma\}$. Sometimes we denote l_p^{σ} by $l_p^{|\sigma|}$, if the support σ is clear from the context.

For finite-dimensional Banach spaces X and Y of the same dimension, denote by d(X, Y) the Banach-Mazur distance, i.e., $\inf ||T|| \cdot ||T^{-1}||$, where the infimum runs over all isomorphisms T from X onto Y. For a finite-dimensional space E, denote by d_E its Euclidean distance $d(E, l_2^{\dim E})$. Furthermore, for $1 \le p, q \le \infty$, denote by $I_{p,q}^N : l_p^N \to l_q^N$ the formal identity operator.

Let us recall the definitions of Gelfand and Kolmogorov numbers. If X and Y are Banach spaces and T is a linear operator from X into Y then, for any n, the n-th Gelfand number is defined by

$$c_n(T) = \inf_{\text{codim } E < n} \sup \{ \|Tx\|_Y / \|x\|_X : x \in E \subset X, \}.$$

The n-th Kolmogorov number of T is defined by

$$d_n(T) = \inf_{\dim F < n} \sup \{ \inf_{f \in F} \|Tx - f\|_Y : x \in X, \|x\|_X \le 1 \}.$$

It is easily checked that for any operator T from X into Y we have

(1.1)
$$c_n(T) = d_n(T^*),$$

If $X = (\mathbb{R}^N, \|\cdot\|_X)$ and $Y = (\mathbb{R}^N, \|\cdot\|_Y)$, and $I: X \to Y$ is the formal identity operator, then $c_n(I)$ and $d_n(I)$ will be denoted by $c_n(X, \|\cdot\|_Y)$ and $d_n(X, \|\cdot\|_Y)$, respectively.

2. Subspaces of l_p^N , for $1 \le p < 2$

The following theorem proves a conjecture of V. Milman concerning the dimension k = k(N, n) of a copy of l_1^k that can be embedded in any subspace E of l_1^N of codimension n. It is interesting to point out that k becomes proportional to N when the codimension n is of order of magnitude log N.

THEOREM 2.1: Let $E \subset l_1^N$ be a subspace with dim E = N - n for some $n \leq N/2$. There exists an integer k with

$$k \ge (1/24)^2 \min((N/4n)\log(N/2n), N)$$

such that E contains a k-dimensional subspace F satisfying $d(F, l_1^k) \leq 6$.

The proof is based on estimates of Gelfand numbers of certain norms. Fix an integer $1 \le s \le N$ and let $\| \cdot \|_s$ be the norm on \mathbb{R}^N defined by

(2.1)
$$|||x|||_s = \max_{|\sigma|=s} \sum_{i \in \sigma} |x(i)| \text{ for } x = (x(i)) \in \mathbb{R}^N.$$

It was essentially proved in [G-G] that for every n and N and for $s \ge 4n/\log N/n$, one has

(2.2)
$$c_n(l_1^N, \|\cdot\|_s) \ge 1/3.$$

The proof of (2.2), or of the equivalent estimate for Kolmogorov numbers, is based on a discussion of the set of extreme points in the dual space $(\mathbb{R}^N, ||| \cdot |||_s)^*$ and on a volume comparison argument.

We now pass to the proof of Theorem 2.1.

Proof of Theorem 2.1: Set $s = \max([4n/\log(N/2n)], 1)$. By (2.2), there exist $x_1 \in E$ with $|||x_1|||_s = 1$ and $||x_1||_1 \leq 3$. Pick $\sigma_1 \subset \{1, \ldots, N\}$ such that $|\sigma_1| = s$ and $\sum_{i \in \sigma_1} |x_1(i)| = 1$. Let σ_1^c be the complement of σ_1 and set $E_2 = E \cap l_1^{\sigma_1^c}$ considered as a subspace of $l_1^{\sigma_1^c}$.

Note that $|\sigma_1^c| = N - s > N/2$, and so, using (2.2) again,

$$c_{n+1}(l_1^{\sigma_1^c}, \|\cdot\|_s) \ge c_{n+1}(l_1^{N/2}, \|\cdot\|_s) > 1/3.$$

Since codim $E_2 < n$, there exist $x_2 \in E_2$ with $|||x_2|||_s = 1$ and $||x_2||_1 \le 3$.

Continuing this way, we construct by induction a sequence of vectors $x_1, \ldots, x_{k'}$ in E, with k' = [N/2s], and $\sigma_1, \ldots, \sigma_{k'}$, mutually disjoint subsets of $\{1, \ldots, N\}$, such that $|\sigma_j| = s$ and $x_{j|\bigcup_{i=1}^{j-1} \sigma_i} = 0$, for $j = 1, \ldots, k'$. Moreover, for $j = 1, \ldots, k'$ one has

$$\|x_{j}\|_{\sigma_{j}}\|_{1} = \sum_{i \in \sigma_{j}} |x_{j}(i)| = 1 \text{ and } \|x_{j}\|_{1} \leq 3.$$

By Schechtman's argument (cf. [J-S]), there is a subset $\eta \subset \{1, \ldots, k'\}$ with $|\eta| \ge k'/(3 \cdot 2^5)$ such that

$$\sum_{\substack{i \in \eta \\ i \neq j}} \|x_j\|_{\sigma_i}\|_1 \le 1/2 \quad \text{for} \quad j \in \eta.$$

Set $F = \operatorname{span}[x_j]_{j \in \eta}$. A well-known perturbation argument shows that for any sequence of scalars $(c_j)_{j \in \eta}$ we have

$$3\sum_{j\in\eta}|c_j|\geq \big\|\sum_{j\in\eta}c_jx_j\big\|_1\geq (1/2)\sum_{j\in\eta}|c_j|.$$

Finally, dim $F \ge a(N/n)\log(1+N/n)$, for some $a \ge 2^{-6}3^{-2}$.

Remark: It would be interesting to know the following nearly isometric version of Theorem 2.1. Given $\epsilon > 0$, what is the largest dimension $k = k(N, n, \epsilon)$ such that every (N-n)-dimensional subspace of l_1^N contains a k-dimensional subspace $(1 + \epsilon)$ -isomorphic to l_1^k ? In particular, is k proportional to N if n is of order log N? A proof of this fact would obviously follow from a refined version of (2.2).

COROLLARY 2.2: Under the assumptions of Theorem 2.1, we have

$$d_E \ge (1/24) \min \left((N/4n) \log(N/2n), N \right)^{1/2}$$

On the other hand, a random (N-n)-dimensional subspace $E \subset l_1^N$ satisfies

$$d_E \le C(N/n)^{1/2} (\log(1+N/n))^{1/2}$$

for some universal constant $C \ge 1$. In particular, whenever $F \subset E$ is a k-dimensional subspace satisfying $d_F \le 2$, then $k \le 4C(N/n)\log(1+N/n)$.

Proof: The first part follows from Theorem 2.1. The second is a consequence of the result in [G-G] where it was proved that for a random (N-n)-dimensional subspace $E \subset l_1^N$, the restriction of the formal identity operator $I_{1,2}$ satisfies

$$||I_{1,2|E}|| \le C \min ((1/n)^{1/2} (\log(1+N/n))^{1/2}, 1).$$

for some universal constant $C \ge 1$.

The case 1 is considerably more difficult than that of <math>p = 1. The result below provides a lower estimate for the type 2 constant and hence for the Euclidean distance of a subspace E of l_p^N , in terms of the codimension of E. Since by [L] $T_2(E) \leq d_E \leq (\dim E)^{1/p-1/2}$, it follows in particular that the type 2 constant is of maximal order whenever $\operatorname{codim} E \leq N^{2/p'}$, with p' = p/(p-1).

THEOREM 2.3: Let $1 . Any subspace E of <math>l_p^N$ with dim E = N - n for some $n \le N/4$ has the type 2 constant satisfying

(2.3)
$$T_2(E) \ge (1/2)\min((N/n)^{1/2}, N^{1/p-1/2}).$$

In particular, $d_E \ge (1/2)\min((N/n)^{1/2}, N^{1/p-1/2})$. On the other hand, for a random (N-n)-dimensional subspace E, one has

$$d_E \leq C \min((N/n)^{1/2}, N^{1/p-1/2}),$$

where C is a universal constant.

Proof: Let Q be orthogonal projection onto E and P = I - Q. Then

$$\left(\sum_{j=1}^{N} \|Pe_{j}\|_{p}^{2}\right)^{1/2} \leq N^{1/p-1/2} \left(\sum_{j=1}^{N} \|Pe_{j}\|_{2}^{2}\right)^{1/2}$$
$$= N^{1/p-1/2} \operatorname{hs}(P) = N^{1/p-1/2} n^{1/2},$$

where hs(P) denotes the Hilbert-Schmidt norm of the operator P. It follows that

$$\left(\sum_{j=1}^{N} \|Qe_j\|_p^2\right)^{1/2} \le N^{1/2} + N^{1/p-1/2} n^{1/2}$$

On the other hand, since

$$\left(\int \|\sum_{j=1}^{N} \varepsilon_{j} P e_{j}\|_{2}^{2} d\varepsilon\right)^{1/2} = \left(\sum_{j=1}^{N} \|P e_{j}\|_{2}^{2}\right)^{1/2} = \operatorname{hs}(P) = n^{1/2},$$

then

$$\left(\int \|\sum_{j=1}^{N} \varepsilon_{j} Q e_{j}\|_{p}^{2} \mathrm{d}\varepsilon\right)^{1/2} \geq N^{1/p} - N^{1/p-1/2} n^{1/2} \geq N^{1/p}/2,$$

whenever $n \leq N/4$. Thus,

$$T_2(E) \ge (1/2) \min \left((N/n)^{1/2}, N^{1/p-1/2} \right),$$

as required.

The statement about random subspaces is a consequence of a result from [G2]. It is proved there that for a random (N-n)-dimensional subspace E, the restriction to E of the formal identity operator $I_{p,2}$ from l_p^N to l_2^N satisfies

$$||I_{p,2|E}: E_p \to l_2^N|| \le C \min \left(N^{1/p'} n^{-1/2}, 1 \right),$$

for some universal constant C. Since $||I_{p,2}^{-1}|| \leq N^{1/p-1/2}$, this shows the upper estimate for the distance $d(E, l_2^{N-n})$ in this case.

Remark 1: Theorem 2.3 implies the lower estimate for Gelfand numbers $c_n(l_p^N, l_2^N)$ (1 obtained in [G1]. In particular, our argument provides an essentially simpler alternative proof of this estimate.

Remark 2: Combining an argument similar to the one above with the invertibility result from [B-T.1] we can show that under the assumptions of Theorem 2.3, there is $k \ge a \min((N/n)^{p/(2-p)}, N)$ (where a > 0 is a universal constant) such that the subspace E contains vectors $x_1 \ldots, x_k$ satisfying

(2.4)
$$a\left(\sum_{i=1}^{k}|t_{i}|^{p}\right)^{1/p} \leq \left\|\sum_{i=1}^{k}t_{i}x_{i}\right\|_{p} \leq \sum_{i=1}^{k}|t_{i}|,$$

for every $(t_i) \in \mathbb{R}^k$.

Remark 3: Let us recall the long standing conjectures that if E is an Ndimensional subspace of L_p whose Euclidean distance is of maximal order, or E is a subspace of l_p^N with codimension $N^{2/p'}$, then E must contain a copy of l_p^k with k proportional to N. It has been recently shown by Bourgain in [B2] that these conjectures are false. Bourgain constructed, for each value of $0 < \varepsilon < 1$ and N, a subspace E of l_p^N of codimension $n \leq N^{\varepsilon}$ which does not contain good copies of l_p^k , for k proportional to N. By Theorem 2.3, this subspace also has the Euclidean distance of maximal order.

3. Subspaces and quotients of l_p^N , for 2

Our first result is concerned with the dimension k of good copies of l_p^k that are contained in subspaces of l_p^N of small codimension, for p > 2. For technical reasons we require the codimension n not to exceed N/16. This complements the result from [B-T.2] concerning subspaces of l_p^N of (small) dimension m = N - n, where estimates of the right order of magnitude were obtained for those values of m which are not considered here.

THEOREM 3.1: Let p > 2 and let

$$k = [(N/n)n^{p'/2}]/8.$$

Then every subspace E of l_p^N with dim E = N - n and n < N/16 contains a k-dimensional subspace $F \subset E$ such that $d(F, l_p^k) \leq C$, where $C = C(p) < \infty$ depends on p only.

The proof of the theorem is based on a modification of the supression theorem from [B-T.2], Corollary 2.4. In order to describe this modification, fix numbers n, N and K, with $n \leq \min(K, N)$, and consider systems of vectors $\{\varphi_i\}_{i=1}^{K}$ in an $L_p(\mu)$ -space, for p > 2 and some probability measure μ , which satisfy the

Vol. 79, 1992

following conditions:

(3.1)
$$\left\|\sum_{i=1}^{K} a_{i} \varphi_{i}\right\|_{L_{p}} \leq n^{1/2 - 1/p} \|a\|_{p},$$

for any sequence $a = (a_1, a_2, \ldots, a_K) \in l_p^K$,

(3.2)
$$\left\|\left(\sum_{i=1}^{K} |\varphi_i|^2\right)^{1/2}\right\|_{\infty} \leq N^{1/p},$$

$$(3.3) \|\varphi_i\|_{L_p} \leq 1, \quad \text{for all} \quad 1 \leq i \leq K.$$

Set

(3.4)
$$\delta = \min \left(n^{-p'(1/2 - 1/p)}, \left(\frac{K}{N} \right)^{2/(p-2)} \right)$$

Then the same proof as in [B-T.2], 2.1, 2.2 and 2.3 shows the following:

THEOREM 3.2: For every p > 2 there exists a constant $D = D(p) < \infty$ such that, whenever $\{\varphi_i\}_{i=1}^{K}$ is a sequence of elements in an $L_p(\mu)$ -space, for some probability measure μ , which satisfies the conditions (3.1), (3.2) and (3.3) above, then a random subset $\sigma \subset \{1, 2, \ldots, K\}$ of cardinality

$$k = [\delta K],$$

where δ is defined by (3.4), contains in turn a subset σ_0 of cardinality $|\sigma_0| > k/2$ such that

$$\left\|\sum_{i\in\sigma_0}a_i\varphi_i\right\|_{L_p}\leq D\|a\|_p,$$

for any sequence $a = (a_i)_{i \in \sigma_o} \in l_p^{|\sigma_o|}$.

We also require a change of density procedure well-known to specialists (see e.g. [B-K-T], [B-L-M], [B-T.2]), which goes back to Lewis [L]. It is stated for subspaces of the space $L_q(\nu) = L_q^N(\nu)$, where ν is the uniform probability measure on $\{1, \ldots, N\}$. Let μ be another probability measure on $\{1, \ldots, N\}$ such that $\mu(k) > 0$, for every $1 \le k \le N$. The operator I_{μ} from $L_q(\nu)$ to $L_q(\mu)$, defined by

$$(I_{\mu}h)(j) = h(j)[\nu(j)/\mu(j)]^{1/q},$$

. .

for j = 1, ..., N and $h \in L_q(\nu)$, is an isometry from $L_q(\nu)$ onto $L_q(\mu)$.

LEMMA 3.3: Let $1 \leq q < \infty$ and $0 < \beta < 1$. Let $X \subset L_q^N(\nu)$ be an ndimensional subspace. There exists a probability measure μ on $\{1, \ldots, N\}$ such that $\mu(j) \geq \beta/N$, for every $j = 1, \ldots, N$, which has the property

(3.5)
$$||x||_{L_{\infty}(\mu)} \leq A\sqrt{n} ||x||_{L_{2}(\mu)}, \text{ for } x \in \tilde{X} = I_{\mu}X,$$

where $A \leq \max\left((1-\beta)^{-1}, 2(1-\beta)^{-1/2}\right)$. Moreover, for any $p \geq 2$ and $x \in I_{\mu}$,

(3.6)
$$||x|| L_p(\mu) \leq \left(A\sqrt{n}\right)^{1-2/q} ||x|| L_2(\mu).$$

Proof of Theorem 3.1: Suppose that E is an (N - n)-dimensional subspace of $L_p^N(\nu)$, for some n < N/16. Recall that ν is the uniform measure on $\{1, \ldots, N\}$ and p > 2. Let $X = E^{\perp} \subset L_{p'}^N(\nu)$ be the annihilator of E. Apply Lemma 3.3 to X with q = p' < 2 and $\beta = 1/2$, so that $A(\beta) \le 2^{3/2}$. Let μ be the corresponding measure on $\{1, \ldots, N\}$ and $\tilde{X} = I_{\mu}X \subset L_{p'}^N(\mu)$ the isometric image of X, determined by Lemma 3.3. Clearly, E^* is isometric to the quotient space $L_{p'}^N(\mu)/\tilde{X}$, hence E is isometric to some subspace E_1 of $L_p^N(\mu)$. In fact, $E_1 = \tilde{X}^{\perp}$, with the annihilator understood in the duality of $L_{p'}^N(\mu)$ and $L_p^N(\mu)$; hence, also $\tilde{X} = (E_1)^{\perp}$. Thus, without loss of generality, we may assume that the given space E is already E_1 .

We pass now to the construction. Let e_1, \ldots, e_N denote the standard unit vector basis in \mathbb{R}^N . Let P be the orthogonal projection from $L_2(\mu)$ onto X and set

$$\eta = \{1 \le i \le N \mid \mu(\{i\}) \le 2/N\}.$$

Since μ is a probability measure it follows that $|\eta| \ge N/2$.

In the main step of the proof we show that there exists $\sigma \subset \eta$ with $|\sigma| \ge N/4$ such that the vectors

$$x_i = N^{1/p} P e_i,$$

with $i \in \sigma$, satisfy the hypotheses of Theorem 3.2.

Indeed, by (3.6) we have, for every $x \in L_p^N(\mu)$,

$$\begin{aligned} \|P_x\|L_p(\mu) &\leq (2^3n)^{1/2-1/p} \|Px\|_{L_2(\mu)} \\ &\leq (2^3n)^{1/2-1/p} \|x\|_{L_2(\mu)} \\ &\leq (2^3n)^{1/2-1/p} \|x\|_{L_p(\mu)}. \end{aligned}$$

Vol. 79, 1992

Hence, for any sequence $a = (a_i)_{i \in \eta} \in l_p^{|\eta|}$, we have

$$(3.7) \left\| \sum_{i \in \eta} a_i x_i \right\|_{L_p(\mu)} \le N^{1/p} (2^3 n)^{1/2 - 1/p} \left\| \sum_{i \in \eta} a_i e_i \right\|_{L_p(\mu)} \le 2^{3/2} n^{1/2 - 1/p} \|a\|_p.$$

Next, by (3.5), we get that

$$\begin{split} \left\| (\sum_{i \in \eta} |x_i|^2)^{1/2} \right\|_{L_{\infty}(\mu)} &= \sup \{ \left\| \sum_{i \in \eta} s_i x_i \right\|_{L_{\infty}(\mu)} : \sum s_i^2 \le 1 \} \\ &\le 2^{3/2} n^{1/2} \sup \{ \left\| \sum_{i \in \eta} s_i x_i \right\|_{L_2(\mu)} |\sum s_i^2 \le 1 \} \\ &\le 4n^{1/2} N^{1/p-1/2}, \end{split}$$

which, since $n \leq N$, implies that

(3.8)
$$\left\| (\sum_{i \in \eta} |x_i|^2)^{1/2} \right\|_{L_{\infty}(\mu)} \le 4N^{1/p}$$

Finally,

$$\begin{split} (\sum_{i \in \eta} \|x_i\|_{L_2(\mu)}^2)^{1/2} &\leq N^{1/p} (\sum_{i \in \eta} \|Pe_i/\mu(i)^{1/2}\|_{L_2(\mu)}^2)^{1/2} (2/N)^{1/2} \\ &\leq 2^{1/2} N^{1/p-1/2} \operatorname{hs}(P) \leq (2n)^{1/2} N^{1/p-1/2}. \end{split}$$

Therefore, for some subset $\sigma' \subset \eta$ with $|\sigma'| \geq |\eta|/2 \geq N/4$, for all $i \in \sigma'$ we get $||x_i||_{L_2(\mu)} \leq (2^3 n)^{1/2} N^{-1/p'}$. Since $n \leq N/16$, this yields by (3.6) that

$$(3.9) ||x_i||_{L_p(\mu)} \le (2^3 n)^{1/2 - 1/p} ||x_i||_{L_2(\mu)} \le (2^3 n/N)^{1/p'} \le 2^{-1/p'} < 1,$$

for all $i \in \sigma'$.

By (3.7), (3.8), (3.9) and by Theorem 3.2 for $K = |\sigma'|$, we get that for $\delta = n^{-p'(1/2-1/p)}$, there is $\sigma \subset \sigma'$ with

(3.10)
$$|\sigma| = \delta |\sigma'|/2 \ge (N/n) n^{p'/2}/8$$

such that

(3.11)
$$\left\|\sum_{i\in\sigma}a_ix_i\right\|_{L_p(\mu)}\leq D\|a\|_p,$$

for any sequence $a = (a_i)_{i \in \sigma} \in l_p^{|\sigma|}$.

In order to conclude the proof observe that, for $i \in \eta$,

$$||e_i||_{L_p(\mu)} = \mu(\{i\})^{1/p} \ge (\beta/N)^{1/p} \ge (2N)^{-1/p}.$$

Therefore, the vectors $z_i = N^{1/p} e_i - x_i$, with $i \in \sigma$, satisfy

(3.12)
$$||z_i||_{L_p(\mu)} \ge (2^{1/p'} - 2^{1/p})/2, \text{ for } i \in \sigma.$$

Also, by (3.11), we get that

$$\left\|\sum_{i\in\sigma}a_{i}z_{i}\right\|_{L_{p}(\mu)} \leq N^{1/p}\left\|\sum_{i\in\sigma}a_{i}e_{i}\right\|_{L_{p}(\mu)} + \left\|\sum_{i\in\sigma}a_{i}x_{i}\right\|_{L_{p}(\mu)} \leq (D+2^{1/p})\|a\|_{p},$$

for any sequence $a = (a_i)_{i \in \sigma} \in l_p^{|\sigma|}$, where D is the constant from the statement of Theorem 3.2.

Combining the latter upper *p*-estimate with (3.12) we get, by Corollary 3.10 from [B-T.1], that there exists $\sigma'' \subset \sigma'$ such that $|\sigma''| > c|\sigma|$, for some c > 0, and span $(z_i)_{i\in\sigma''}$ is *C*-isomorphic to $l_p^{|\sigma''|}$, for some constant C = C(p). Since $z_i = N^{1/p}(I-P)e_i \in E$, for all *i*, this completes the proof in view of (3.10).

Contrary to the case of subspaces of dimension n, with $n \leq N/2$, considered in [B-T.2], the formula for k obtained in Theorem 3.1 is not the best possible. The recent example of Bourgain [B2], already mentioned in the previous section, shows that the maximal k for which Theorem 3.1 holds cannot be proportional to N, whenever n is a power of N.

We pass now to the investigation of quotients of l_p^N , for p > 2. It already follows from Theorem 2.3 that if X is a quotient of l_p^N with dim X = N - n, where $n \leq CN^{2/p}$, then the Euclidean distance of X is of maximal order, i.e., $d_X \geq aN^{1/2-1/p}$, where C > 0 is a universal constant and a = a(C) > 0. However, contrary to the dual situation of subspaces of l_p^N discussed in the earlier section, such a quotient space X most likely contains a subspace of dimension k proportional to N which is isomorphic to l_p^k . We prove this fact under a slightly stronger assumption that $n \leq C(N/\log N)^{2/p}$.

THEOREM 3.4: For every $2 and <math>\varepsilon > 0$, there exists a constant $C = C(p,\varepsilon) > 1$ such that, whenever $n \leq C(N/\log N)^{2/p}$ and Y is a quotient of l_p^N of dimension N-n, then Y contains a subspace $F \subset Y$ with $k = \dim F \geq N/C$ such that $d(F, l_p^k) \leq 1 + \varepsilon$.

The proof of the theorem requires the following analytic fact:

PROPOSITION 3.5: For every 2 and <math>0 < a < 1, there exists a constant c(p, a) > 0 such that, whenever $X \subset l_p^N$ is an n-dimensional subspace, with n satisfying $N/\log N \ge c(p, a)n^{p/2}$, then one can find a subset $\sigma \subset \{1, \ldots, N\}$ with $|\sigma| \ge [(a/6)N]$ such that

$$||R_{\sigma}x||_{p} \leq a||x||_{p} \quad \text{for all } x \in X,$$

where R_{σ} denotes the restriction operator to σ .

The proof of the proposition uses techniques developed in [B-M-L]; it is based on a random approach combined with entropy estimates.

Let us recall first that, for two convex subsets B and \tilde{B} of a linear space and for t > 0, the covering number $E(B, \tilde{B}, t)$ is defined by

$$E(B, \tilde{B}, t) = \min\{M : \exists \{x_i\}_{i=1}^M \text{ so that } \tilde{B} \subset \bigcup_{1 \leq M} (x_i + tB)\}$$

We will require upper estimates for some covering numbers in the case of unit balls in subspaces of l_p^N . In [B-M-L] it was proved that, for any $0 < \beta < 1$, there exists a constant $A' = A'(\beta)$ so that, whenever $X \subset l_p^N$ is an *n*-dimensional subspace, μ is the probability measure on $\{1, \ldots, N\}$ given by Lemma 3.3 which determines the isometry I_{μ} and satisfies (3.5) above, and B_p and B_{∞} denote the unit balls in $I_{\mu}(X) \subset L_p^N(\mu)$ and in $I_{\mu}(X) \subset L_{\infty}^N(\mu)$ respectively, then, for all t > 0, we have that

$$(3.14) \qquad \qquad \log E(B_p, B_\infty, t) \le A' pnt^{-2} \log N.$$

Clearly, by increasing A in (3.5), if necessary, we may assume that both estimates (3.5) and (3.14) are valid with the same constant $A(\beta)$.

The following lemma is proved in detail in [B-L-M] (see the proof of Theorem 7.3 there).

LEMMA 3.6: For every $2 \le p < \infty$, b > 1, $0 < \delta < 1$ and $A \ge 1$, there exists a constant $c'(p, b, \delta, A) > 0$ such that if $X \subset L_p^N(\mu)$ is an n-dimensional subspace which satisfies (3.5) and (3.14), with the constant A, and $N/\log N \ge c' n^{p/2}$, then there exists a subset $\sigma \subset \{1, \ldots, N\}$ with $M = |\sigma| = [N/b]$ such that

(3.15)
$$\left|M^{-1}\sum_{j\in\sigma}|x(j)|^p-1\right|<\delta,$$

for every $x = (x(j)) \in X$ with $||x||_p = 1$.

Now we are ready for the

Proof of Proposition 3.5: Let $\delta = 1/2$, $\beta = 1 - a/(6-a)$ and b = 3/a. Let μ and I_{μ} be given by Lemma 3.3 so that, in particular, $\mu(j) \ge \beta/N$, for all $j = 1, \ldots, N$. Since I_{μ} is an isometry from l_{p}^{N} onto $L_{p}^{N}(\mu)$ preserving the lattice structure, it is sufficient to prove the proposition for $I_{\mu}(X) \subset L_{p}^{N}(\mu)$.

Set $c(p, a) = c'(p, b, \delta, A(\beta))$, assume that $N/\log N \ge cn^{p/2}$ and apply Lemma 3.6. So there is a subset $\sigma' \subset \{1, \ldots, N\}$ with $M = |\sigma'| = [N/b]$ for which (3.15) is satisfied. Let $J = \{1 \le j \le N : \mu(j) \le 2/N\}$ and let J^c be the complement of J. Set

$$\mu_0 = \sum_{j \in J^c} \mu(j)$$

and notice that $|J|(\beta/N) \leq 1 - \mu_0$ and $|J^c|(2/N) \leq \mu_0$. Thus,

$$N = |J| + |J^{c}| \le (1 - \mu_{0})N/\beta + \mu_{0}N/2,$$

which further yields that

(3.16)
$$|J^c| \le \mu_0 N/2 \le N(1-\beta)/(2-\beta).$$

Set $\sigma = \sigma' \cap J$. By the definition of J and (3.15) we have

(3.17)
$$\sum_{j \in \sigma} \mu(j) |x(j)|^p \le (2/N) \sum_{j \in \sigma'} |x(j)|^p \le (2/b)(1+\delta) \le a,$$

for all $x = (x(j)) \in X$ with $||x||_p = 1$.

Moreover, by (3.16),

$$|\sigma| \ge |\sigma'| - |J^c| \ge N/b - 1 - N(1 - \beta)/(2 - \beta) \ge Na/6 - 1.$$

This concludes the proof.

We finally pass to the

Proof of Theorem 3.4: Fix p > 2 and $\varepsilon > 0$ and pick 0 < a < 1 such that $(1-a)/(1+a) = (1+\varepsilon)^{-1}$. Let c = c(p,a) be the constant appearing in the statement of Proposition 3.5 and let Y be a quotient of l_p^N of dimension N-n for which $cn^{p/2} \leq N/\log N$. Denote by Q the quotient map from l_p^N onto Y and set $X = \ker Q$. Then, by Proposition 3.5, there exists a set $\sigma \subset \{1, \ldots, N\}$ with $|\sigma| \geq aN/6$ which satisfies (3.13).

Set $E = \operatorname{span}[e_j]_{j \in \sigma} \subset l_p^N$. We will show that F = Q(E) is the required subspace of Y.

Clearly, $k = \dim E = |\sigma| \ge (a/6)N$. Also, for any $(t_j)_{j \in \sigma} \in \mathbb{R}^{|\sigma|}$, one has

(3.18)
$$\left(\sum_{j\in\sigma}|t_j|^p\right)^{1/p} = \|\sum_{j\in\sigma}t_je_j\|_p \ge \|\sum_{j\in\sigma}t_j(Qe_j)\|_Y$$

Now fix $x = \sum_{j \in \sigma} t_j e_j \in E$ with $||x||_p = 1$. Set $\gamma = 2/(1+a) > 1$ and observe that, for $z \in X$ with $||z||_p \ge \gamma$, we have

$$\|x-z\|_p \ge \gamma - 1.$$

On the other hand, if $z \in X$ and $||z||_p < \gamma$ then, by (4.14), $||R_{\sigma}z||_p < a\gamma$. Since $R_{\sigma}x = x$ we get that

$$||x-z||_p \ge ||R_{\sigma}(x-z)||_p \ge ||x||_p - ||R_{\sigma}z||_p > 1 - a\gamma.$$

Therefore,

$$\|Qx\|_Y = \inf_{z \in X} \|x - z\|_p \geq \min(\gamma - 1, 1 - a\gamma).$$

By the choice of γ and a, this yields $||Qx||_Y \ge (1+\varepsilon)^{-1}$. Together with (3.18) this shows that $d(F, l_p^k) \le 1 + \varepsilon$.

4. Subspaces of l_{∞}^N

In this section we investigate subspaces of l_{∞}^{N} of small codimension. The following theorem provides an asymptotically precise formula for the dimension k of an $(1 + \varepsilon)$ -isomorphic copy of l_{∞}^{k} contained in such a subspace, in terms of some Gelfand numbers. The proof is similar to the construction of Figiel and Johnson [F-J], for n = N/2.

THEOREM 4.1: Let $E \subset l_{\infty}^{N}$ be a subspace with dim E = N - n for some $n \leq N/2$. Let $0 < \varepsilon < 2$. There exists an integer k with

$$k \geq (\varepsilon/8) N c_{n+1}(l_1^{N/2}, \|\cdot\|_{\infty})$$

such that E contains a k-dimensional subspace F satisfying $d(F, l_{\infty}^{k}) \leq 1 + \epsilon$.

On the other hand, for every $n \leq N/2$ there exists a subspace $E \subset l_{\infty}^{N}$ with dim E = N - n, such that whenever F is a subspace of E, say of dimension k, then we have $k \leq d(F, l_{\infty}^{k}) Nc_{n+1}(l_{1}^{N}, \|\cdot\|_{\infty})$.

Proof: Denote $c_{n+1}(l_1^{N/2}, \|\cdot\|_{\infty})$ by α . It is easy to see that whenever $N' \geq N/2$, then $c_{n+1}(l_1^{N'}, \|\cdot\|_{\infty} \geq \alpha$. Therefore, for every $N' \geq N/2$ and any subspace $G \subset \mathbb{R}^{N'}$ with $\operatorname{codim} G \leq n$, there exists $y \in G$ such that

(4.1)
$$||y||_{\infty} = 1 \text{ and } ||y||_{1} \le 1/\alpha.$$

Fix $0 < \varepsilon < 2$ and take $0 < \delta < 1$ such that $(1 + \delta)/(1 - \delta) = 1 + \varepsilon$. Let x_1, \ldots, x_k be a maximal set of vectors in E such that

(4.2)
$$\|x_{j}\|_{\infty} = 1, \qquad \|x_{j}\|_{1} \le 1/\alpha, \text{ for } j = 1, \dots, k,$$
$$\|\sum_{j=1}^{k} |x_{j}|\|_{\infty} \le 1 + \delta.$$

It is well-known and easily verified that $F = \operatorname{span}[x_j]_{j=1}^k$ satisfies $d(F, l_{\infty}^k) \leq (1 + \delta)/(1-\delta)$. Indeed, for any scalar sequence $(a_j)_{j=1}^k$ with $\max_{1 \leq j \leq k} |a_j| = |a_{j_0}| = 1$, pick i_0 so that $|x_{j_0}(i_0)| = 1$. Then

$$1+\delta \geq \Big\|\sum_{j=1}^{k}a_{j}x_{j}\Big\|_{\infty} \geq 1-|\sum_{j\neq j_{0}}a_{j}x_{j}(i_{0})| \geq 1-\delta.$$

To estimate the dimension k of F, let

$$\sigma = \{1 \leq i \leq N : \sum_{j=1}^{k} |x_j(i)| > \delta\}.$$

Then we have,

(4.3)
$$\delta|\sigma| < \left\|\sum_{j=1}^{k} |x_j|\right\|_1 \le \sum_{j=1}^{k} \|x_j\|_1 \le k/\alpha.$$

Assume that $|\sigma| < N/2$ and consider the subspace $G = \{x \in E : x(i) = 0 \text{ for } i \in \sigma\} \subset \mathbb{R}^{|\sigma^c|}$. Clearly, $N' = |\sigma^c| \ge N/2$ and codim $G \le n$. Hence, there is an $y \in G$ satisfying (4.1). It follows that the set $\{x_1, \ldots, x_k, y\}$ satisfies (4.2), thus contradicting the maximality of the x_j 's. Therefore $|\sigma| \ge N/2$ which yields, by (4.3), that

$$k \geq (\delta/2)N\alpha$$
.

This completes the first part of the proof. For the converse part, pick a subspace $E \subset \mathbb{R}^N$ with dim E = N - n such that the restriction of the formal identity map $I_{1,\infty}$ to E satisfies

$$||I_{1,\infty|E}|| = c_{n+1}(I_{1,\infty}) = c_{n+1}(l_1^N, ||\cdot||_{\infty}),$$

and let E_1 (resp. E_{∞}) denote E when considered as a subspace of l_1^N (resp. l_{∞}^N). Then, for any subspace $F \subset E_{\infty}$ fix an isomorphism $T : l_{\infty}^k \to F$ onto F with $\|T\| \|T^{-1}\| = C = d(F, l_{\infty}^k)$. Let $S : E_{\infty} \to l_{\infty}^k$ be an extension of T^{-1} with $\|S\| = \|T^{-1}\|$. Then the identity operator $id_{l_{\infty}^k}$ on l_{∞}^k admits the factorization $i_{l_{\infty}^k} = S I_{1,\infty|E} I_{\infty,1|E} T$, as follows:

$$l_{\infty}^{k} \xrightarrow{T} E_{\infty} \xrightarrow{I_{\infty,1}|E} E_{1} \xrightarrow{I_{1,\infty}|E} E_{\infty} \xrightarrow{S} l_{\infty}^{k}.$$

Therefore,

$$k = \operatorname{tr} id_{l_{\infty}^{k}} \leq \pi_{1}(id_{l_{\infty}^{k}})$$

$$\leq ||T|| \pi_{1}(I_{\infty,1|E}) ||I_{1,\infty|E}|| ||S|| \leq CNc_{n+1}(l_{1}^{N}, ||\cdot||_{\infty}),$$

thus completing the proof.

Let us recall some known estimates for the Gelfand numbers $c_n(l_1^N, l_{\infty}^N)$. The upper estimate was obtained in [K1], [K2], [H] and it states that

(4.4)
$$c_n(l_1^N, \|\cdot\|_{\infty}) \le C \min\left(1, (\log N/n)^{1/2}, (\log N/\log(1+n))n^{-1/2}\right)$$

where C is a universal constant. The lower estimate, which was proved in [G3], states that, for some constant a > 0, one has

(4.5)
$$c_n(l_1^N, \|\cdot\|_{\infty}) \ge \begin{cases} an^{-1/2} \left(\frac{\log N}{\log(1+n/\log N)}\right)^{1/2} & \text{if } n \ge \log N \\ a & \text{if } 1 \le n \le \log N \end{cases}$$

Observe that in the ranges $n \leq \log N$ and $N^{\delta} \leq n \leq N/2$, for some $\delta > 0$, the upper and the lower estimates (4.4) and (4.5) coincide (up to constants depending on δ), thus giving the right order of growth of $c_n(l_1^N, l_{\infty}^N)$ in these cases. In fact,

$$\begin{aligned} a &\leq c_n(l_1^N, \|\cdot\|_{\infty}) \leq C & \text{for} \quad n \leq \log N \\ a(1/\delta)^{1/2} n^{-1/2} &\leq c_n(l_1^N, \|\cdot\|_{\infty}) \leq C(1/\delta) n^{-1/2} & \text{for} \quad n \geq N^{\delta}. \end{aligned}$$

It follows that subspaces of l_{∞}^N of codimension $n \leq \log N$ contain $(1 + \varepsilon)$ isomorphic copies of l_{∞}^k for k proportional to N. On the other hand, in the power type range of codimension, $N^{\delta} \leq n \leq N/2$, the maximal dimension of an $(1 + \varepsilon)$ isomorphic copy of l_{∞}^k contained in the subspace is of the order $(\varepsilon/\delta)Nn^{-1/2}$ (with $0 < \varepsilon < 2$). This gives a counterpart to the results proved by Figiel and Johnson [F-J] for subspaces of l_{∞}^N of dimension proportional to N, and by Bourgain [B1] for subspaces of power type dimension.

For quotients of l_{∞}^N we have the following fact which is an immediate consequence of Theorem 2.1.

COROLLARY 4.2:

Let X be a quotient of l_{∞}^N with dim X = N-n. There exist universal constants 0 < a < 1 and $C \ge 1$, and an m-dimensional subspace $Y \subset X$ such that $m \ge a(N/n)\log(N/n)$ and $d(Y, l_1^m) \le C$.

Added in proof: Nigel Kalton recently informed us that the following almost isometric version of Theorem 2.1 is true. Given $\epsilon > 0$, there is $k = k(N, n, \epsilon) \ge (1/2)(N - (1 - \epsilon^{-1})^n)$ such that every (N - n)-dimensional subspace $E \subset l_1^N$ contains a k-dimensional subspace $(1 + \epsilon)$ -isomorphic to l_1^k . In particular, $n \le (1/2)(\log(1 - \epsilon^{-1}))^{-1}\log N$, then $k(N, n, \epsilon) \ge (1/2)(N - N^{1/2})$, which tends to N/2 as $N \to \infty$. On the other hand, $k(N, n, \epsilon) \le N/2$, for all $\epsilon > 0$ and $1 \le n \le N$.

References

- [BDGJN] G. Bennett, L. E. Dor, V. Goodman, W. B. Johnson and C. M. Newman, On uncomplemented subspaces of L_p , 1 , Israel J. Math. 26 (1971),178-187.
- [B1] J. Bourgain, Subspaces of L[∞]_N, arithmetical diameter and Sidon sets, in Probability in Banach Spaces V, Proc. Medford 1984, Lecture Notes in Math. 1153, Springer-Verlag, Berlin, 1985, pp. 96-127.
- [B2] J. Bourgain, A remark on the behaviour of L_p -multipliers and the range of operators acting on L_p -spaces, Israel J. Math., this issue.
- [B-K-T] J. Bourgain, N. Kalton and L. Tzafriri, Geometry of finite-dimensional subspaces and quotients of L_p, in Geometric Aspects of Functional Analysis, Israel Seminar 1987-88, eds. J. Lindenstrauss and V. Milman, Lecture Notes in Math. 1376, Springer-Verlag, Berlin, 1986, pp. 138-176.
- [B-L-M] J. Bourgain, J. Lindenstrauss and V. D. Milman, Approximation of zonoids by zonotopes, Acta Math. 162 (1989), 73-141.

- [B-T.1] J. Bourgain and Tzafriri, L., Invertibility of "large" submatrices with applications to the geometry of Banach spaces and harmonic analysis, Israel J. Math. 57 (1987), 137-224.
- [B-T.2] J. Bourgain and L. Tzafriri, Embedding l_p^k in subspaces of L_p for p > 2, Israel J. Math., to appear.
- [F-J] T. Figiel and W. B. Johnson, Large subspaces of l_{∞}^N and estimates of the Gordon-Lewis constant, Israel J. Math. **37** (1980), 92-112.
- [F-L-M] T. Figiel, J. Lindenstrauss and V. D. Milman, The dimension of almost spherical sections of convex bodies, Acta Math. 139 (1977), 53-94.
- [G-G] A. Yu. Garnaev and E. D. Gluskin, On diameters of the Euclidean ball, Dokl. Akad. Nauk SSSR 277 (1984), 1048-1052 (Russian), Soviet Math. Doklady 30 (1984), 200-204. bg
- [G1] E. D. Gluskin, On some finite-dimensional problems from the theory of widths, Vestnik Lenin. Univ. 13 (1981), 5-10 (Russian), Vestnik Lenin. Univ. Math. 14 (1982), 163-170.
- [G2] E. D. Gluskin, Norms of random matrices and diameters of finite-dimensional sets, Mat. Sb. 120 (1983), 180–189 (Russian).
- [G3] E. D. Gluskin, The octahedron is badly approximated by random subspaces,
 Funk. Analiz i Ego Priloz. 20 (1986), 14-20 (Russian).
- [H] K. Höllig, Approximationzahlen von Sobolev-Einbettungen, Math. Ann. 242 (1979), 273-281.
- [J-S] W. B. Johnson and G. Schechtman, On subspaces of L₁ with maximal distance to Euclidean spaces, Proc. Res. Workshop on Banach Spaces Theory (Bor-Luh-Lin, ed.), 1981, 83-96.
- [K1] B. S. Kashin, On the diameter of octahedra, Usp. Mat. Nauk 30 (1975), 251-252 (Russian),
- [K2] B. S. Kashin, On the Kolmogorov diameters of octahedra, Dokl. Akad. Nauk SSSR 214 (1974), 1024–1026 (Russian), Soviet Math.Dokl. 15 (1974), 304–307.
- [K3] B. S. Kashin, Sections of some finite-dimensional sets and classes of smooth functions, Izv. Akad. Nauk SSSR 41 (1977), 334-351 (Russian).

192	E. GLUSKIN ET AL.	Isr. J. Math.
[L]	D. R. Lewis, Finite-dimensional subspaces of L_p , Studia Math (1978), 207–212.	iematica 63
[L-T]	J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces. I. Spaces, Springer-Verlag, Berlin, 1977.	. Sequence
[M]	V. D. Milman, A new proof of a theorem of A. Dvoretzky on convex bodies, Funct. Anal. Appl. 5 (1971), 288–295.	sections of
[M-S]	V. D. Milman and G. Schechtman, Asymptotic theory of finite- normed spaces, Lecture Notes in Math. 1200, Springer-Verlag, H	dimensional Berlin, 1986.
[TJ]	N. Tomczak-Jaegermann, Banach-Mazur Distances and Finite- Operator Ideals, Longman Scientific & Technical, Harlow, 1989	dimensional